Tìm 3 số nguyên tố liên tiếp để tổng bình phương của chúng là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
Tìm 3 số nguyên tố liên tiếp sao cho tổng bình phương của chúng cũng là số chính phương.
Giúp tớ với.
Nếu 3 số nguyên tố liên tiếp đó là : 2;3;5
=>22.32.52=900 ( loại )
Nếu 3 số nguyên tố liên tiếp là : 3;5;7
=> 32.52.72=11025 ( loại )
=> một điều rằng không có số nào hết
3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)
Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)
Ta có: 1=<x=<9 <=>100=<100x=<900(2)
0=<y=<9 (3)
Từ (2) và (3)=> 100=<100x+y=<909 (4)
Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}
Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)
Do đó, x0y=704=> x=7 và y= 4
Bài 2:
a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2
Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2
=> Tổng 3 số cp liên tiếp chia 3 dư 2
c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2
(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1
= 8x2+2=2(4x2+1)
Ta có: 2 chia hết cho 2
=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2
mà 4x2+1 là số lẻ nên không chia hết cho 2
Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương