K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

+ Nếu a < b

=> a.n < b.n

=> a.n + a.b < b.n + a.b

=> a.(b + n) < b.(a + n)

=> a/b < a+n/b+n 

Lm tương tự vs 2 trường hợp còn lại là a = b là a > b

22 tháng 8 2016

Nếu như a cũng lớn hơn 0:

Thì a phần b sẽ nhỏ hơn a cộng n phần b cộng n.

Em có thể chứng minh bằng cách quy đồng tử.

Với a bé hơn không:

Số có giá trị tuyệt đối lớn hơn số kia giống phần trên sẽ bé hơn số có giá trị tuyệt đối nhỏ hơn.

Chúc em học tốt^^

9 tháng 6 2017

Tìm trước khi hỏi , google-sama chưa tính phí mà !

Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 6 2017

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

23 tháng 8 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

9 tháng 6 2017

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\)\(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

23 tháng 8 2016

Xét a>b, ta đặt a=b+m=>a+n=b+m+n 
vậy: a/b=(b+m)/b= 1+m/b.....(3) 
(a+n)/(b+n)=(b+m+n)/(b+n)=(b+n+m)/(b+n)... 
So sánh (3) và (4) cho ta a/b<(a+n)/(b+n) 

Nếu a là nguyên âm thì bạn có trừong hợp ngược lại 
Nếu a=0 thì a/b=0 khi đó (a+1)/(b+1)=1/(b+1) >0=a/b 
Tuơng tự khi a=0 thì (a+n)/b+n)=n/(b+n)>a/b

23 tháng 8 2016

cam 0n bạn

23 tháng 6 2016

* Nếu \(\frac{a}{b}>1\) thì \(a>b\)\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)

* Nếu \(\frac{a}{b}=1\) thì \(a=b\)\(\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}=1\)

* Nếu \(\frac{a}{b}< 1\) thì \(a< b\)\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\) 

18 tháng 1 2018

a,b là hai số nguyên cùng dấu

20 tháng 6 2016

Bó tay.com

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

10 tháng 3 2020

Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\). Xét hiệu 2 vế:

\(VT-VP=\frac{\sum\limits_{cyc} x(y-z)^2}{4(x+y)(y+z)(z+x)} \geq 0\)

Ta có đpcm.