cho tam giác MNB vuông tại M, dường cao MH biết MN=6, MB=8 a) C/m: tam giác NMH đồng dạng tam giác NBM b) Tính NB, NH, BH, MH c) A là hình chiếu của H trên MB C/m: HA2= MA.BA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NP=NH+HP
=1+4
=5(cm)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(MH^2=HN\cdot HP\)
=>\(MH^2=1\cdot4=4\)
=>MH=2(cm)
ΔMHP vuông tại H
=>\(HM^2+HP^2=MP^2\)
=>\(MP^2=2^2+4^2=20\)
=>\(MP=2\sqrt{5}\left(cm\right)\)
b:
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)
=>\(MN^2=25-20=5\)
=>\(MN=\sqrt{5}\left(cm\right)\)
Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)
=>\(cosN=\dfrac{\sqrt{5}}{5}\)
Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)
=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)
c: Xét ΔMNA vuông tại M có MK là đường cao
nên \(NK\cdot NA=NM^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=NM^2\left(2\right)\)
Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)
=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)
Xét ΔNKP và ΔNHA có
\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)
\(\widehat{KNP}\) chung
Do đó: ΔNKP đồng dạng với ΔNHA
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
a) Xét ΔMBP vuông tại B và ΔMAN vuông tại A có
\(\widehat{BMP}\) chung
Do đó: ΔMBP\(\sim\)ΔMAN(g-g)
Suy ra: \(\dfrac{MB}{MA}=\dfrac{MP}{MN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MB\cdot MN=MA\cdot MP\)
b) Xét ΔMNP có
NA là đường cao ứng với cạnh MP(gt)
PB là đường cao ứng với cạnh MN(gt)
NA cắt PB tại H(gt)
Do đó: H là trực tâm của ΔMNP(Tính chất ba đường cao của tam giác)
Suy ra: MH\(\perp\)NP tại C
hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi
a, tam giác MND cân tại M (gt)
=> ^MND = ^MDN (tc)
^MND + ^MNB = 180 (kb)
^MDN + ^MDA = 180 (kb)
=> ^MNB = ^MDA
xét tam giác MNB và tam giác MDA có BN = DA (gt)
MN = MD do tam giác MND cân tại M (gt)
=> tg MNB = tg MDA (c-g-c)
=> MA = MB (đn)
=> tg MAB cân tại M (Đn)
b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)
^AHD = ^BKN = 90
^A = ^B do tam giác MAB cân tại M (câu a)
=> tg DHA = tg NKB (ch-gn)
=> DH = KN (đn)
c, tg DHA = tg NKB (câu b)
=> AH = KB (đn)
có MA = MB (câu a)
AH + MH = AM
MK + KB = BM
=> MH = MK
d, có ^HDA = ^KNB do tg DHA = tg NKB (Câu b)
^HDA = ^NDI (đối đỉnh)
^KNB = ^DNI (đối đỉnh)
=> ^NDI = ^DNI
=> tam giác DNI cân tại I
a: Xét ΔNHM vuông tại H và ΔNMB vuông tại M có
góc N chung
=>ΔNHM đồng dạng với ΔNMB
b: NB=căn 6^2+8^2=10cm
NH=6^2/10=3,6cm
BH=10-3,6=6,4cm
MH=6*8/10=4,8cm
c: ΔHMB vuông tại H có HA là đường cao
nên HA^2=MA*BA