K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNHM vuông tại H và ΔNMB vuông tại M có

góc N chung

=>ΔNHM đồng dạng với ΔNMB

b: NB=căn 6^2+8^2=10cm

NH=6^2/10=3,6cm

BH=10-3,6=6,4cm

MH=6*8/10=4,8cm

c: ΔHMB vuông tại H có HA là đường cao

nên HA^2=MA*BA

27 tháng 11 2023

a: NP=NH+HP

=1+4

=5(cm)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH^2=HN\cdot HP\)

=>\(MH^2=1\cdot4=4\)

=>MH=2(cm)

ΔMHP vuông tại H

=>\(HM^2+HP^2=MP^2\)

=>\(MP^2=2^2+4^2=20\)

=>\(MP=2\sqrt{5}\left(cm\right)\)

b:

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MN^2+\left(2\sqrt{5}\right)^2=5^2\)

=>\(MN^2=25-20=5\)

=>\(MN=\sqrt{5}\left(cm\right)\)

Xét ΔMNP vuông tại M có \(cosN=\dfrac{MN}{NP}\)

=>\(cosN=\dfrac{\sqrt{5}}{5}\)

Xét ΔMNP vuông tại M có \(tanP=\dfrac{MN}{MP}\)

=>\(tanP=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

c: Xét ΔMNA vuông tại M có MK là đường cao

nên \(NK\cdot NA=NM^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=NM^2\left(2\right)\)

Từ (1) và (2) suy ra \(NK\cdot NA=NH\cdot NP\)

=>\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

Xét ΔNKP và ΔNHA có

\(\dfrac{NK}{NH}=\dfrac{NP}{NA}\)

\(\widehat{KNP}\) chung

Do đó: ΔNKP đồng dạng với ΔNHA

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

b: ΔHAC vuông tại H có HN vuông góc AC

nên HN^2=NA*NC

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

15 tháng 5 2018

a)vì tam giác ABC cân tại A

=>AB=AC và góc ABC=góc ACB

xét tam giác ABM và tam giác ACM có

góc AMB=góc AMC(= 90 độ)

AB=AC

góc ABM=góc ACM

=>tam giác ABM = tam giác ACM (c/h-g/n)

=>MB=MC(2 cạnh tương ứng)

b)ta có BC=24

mà MB=MC

=>M là trung điểm của BC

=>BM=MC=24/2=12 cm

xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:

\(AB^2=AM^2+BM^2\)

\(AM^2=AB^2-BM^2\)

\(AM^2=20^2-12^2\)

\(AM^2=400-144\)

AM^2=256

=>AM=16 cm

c)vì tam giác ABM = tam giác ACM(cmt)

=>góc BAM=góc CAM(2 góc tương ứng)

xét tam giác HAM và tam giác KAM có

góc AHM = góc AKM(= 90 độ)

cạnh AM chung

góc BAM=góc CAM

=>tam giác HAM = tam giác KAM(c/h-g/n)

=>AH=AK(2 cạnh tương ứng)

=>tam giác AHK cân tại A

d)mình không biết làm phàn này nha

a) Xét ΔMBP vuông tại B và ΔMAN vuông tại A có 

\(\widehat{BMP}\) chung

Do đó: ΔMBP\(\sim\)ΔMAN(g-g)

Suy ra: \(\dfrac{MB}{MA}=\dfrac{MP}{MN}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MB\cdot MN=MA\cdot MP\)

b) Xét ΔMNP có 

NA là đường cao ứng với cạnh MP(gt)

PB là đường cao ứng với cạnh MN(gt)

NA cắt PB tại H(gt)

Do đó: H là trực tâm của ΔMNP(Tính chất ba đường cao của tam giác)

Suy ra: MH\(\perp\)NP tại C

23 tháng 4 2020

M N D A B I

hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi

a, tam giác MND cân tại M (gt) 

=> ^MND = ^MDN (tc)

^MND + ^MNB = 180 (kb)

^MDN + ^MDA = 180 (kb)

=> ^MNB = ^MDA 

xét tam giác MNB và tam giác MDA có BN = DA (gt)

MN = MD do tam giác MND cân tại M (gt)

=> tg MNB = tg MDA (c-g-c)

=> MA = MB  (đn)

=> tg MAB cân tại M (Đn)

b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)

^AHD = ^BKN = 90

^A = ^B do tam giác MAB cân tại M (câu a)

=> tg DHA = tg NKB (ch-gn)

=> DH = KN (đn)

c, tg DHA = tg NKB (câu b)

=> AH = KB (đn)

có MA = MB (câu a)

AH + MH = AM 

MK + KB = BM

=> MH = MK

d, có ^HDA  = ^KNB do tg DHA = tg NKB (Câu b)

^HDA = ^NDI (đối đỉnh)

^KNB = ^DNI (đối đỉnh)

=> ^NDI = ^DNI 

=> tam giác DNI cân tại I