Cho đường tâm O có hai đường kính AB và AC vuông góc với nhau , dây AEddi qua trung điểm P của OC, ED cắt CB tại a) Chứng minh tứ giác CPQE nội tiếp nữa đường tròn b) Chứng minh:PQ//AB c) so sánh diện tích tam giác CPQ với diện tích tam giác ABV
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, AB,CD là đường kính vuông góc với nhau => cung AD,AC,BC,BD có số đo = nhau
=> góc BCD = góc AED ( góc nội tiếp chắn cung AD , BD )
=> tứ giác CPQE nội tiếp
b, lại có góc CED=90 => góc CPQ = 90 => PQ vuông góc với CD mà AB cũng vuông góc với CD => AB//PQ
Sửa đề: DO cắt AC tại E
a) Xét (O) có
DA là tiếp tuyến có A là tiếp điểm(gt)
DC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: DA=DC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: DA=DC(Cmt)
nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra DO là đường trung trực của AC
\(\Leftrightarrow DO\perp AC\)
mà DO cắt AC tại E(gt)
nên \(DO\perp AC\) tại E
Xét tứ giác CEOH có
\(\widehat{CEO}\) và \(\widehat{CHO}\) là hai góc đối
\(\widehat{CEO}+\widehat{CHO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CEOH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé