tìm số dư trong phép chia
\(2004^{2004}\):11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 20042=4016016 chia 11 dư 1
=>(20042)1002=4.......016 chia 11 dư 1
=> 20042004 chia 11 dư 1
Ta có 2002 \(\subset\)11 \(\Rightarrow\) 2004 - 2 \(\subset\) 11 \(\Rightarrow\) 2004 ≡ 2 (mod 11)
\(\Rightarrow\) 20042004 ≡ 22004 (mod 11) mà 210 ≡ 1 (mod 11) (vì 1024 - 1 \(\subset\) 11)
\(\Rightarrow\) 20042004 = 24.22000 = 24.(210)200 ≡ 24 ≡ 5 (mod 11)
Vậy 20042004 chia 11 dư 5.
(x+1)(x+3)(x+5)(x+7) + 2004
= ( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 2004
đặt x2 + 8x + 1 = a
\(\Rightarrow\)( a + 6 ) ( a + 14 ) + 2004
= a2 + 20a + 84 + 2004
= a2 + 20a + 2088
Ta thấy a2 + 20a \(⋮\)x2 + 8x + 1
\(\Rightarrow\)(x+1)(x+3)(x+5)(x+7) + 2004 chia x2 + 8x + 1 dư 2088
Giải:
Biết 376 = 62 . 6 + 4.
Ta có:
Vậy. Kết quả: Số dư của phép chia 2004376 cho 1975 là 246