tìm n thuộc N
a, 16. 2n =256
b, n2012 = n
c, 4n +1 = 4 . 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
a) Ta có 4n-5=4n-2+3
Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ư(3)={1;3;-1;-3}
=>n={2;4;0;-2}
Do n thuộc N nên n={2;4;0}
các câu còn lại tương tự
tick nha
\(n+5⋮n+1\)
\(n+1+4⋮n+1\)
\(4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Tự lập bảng ....
\(3n+4⋮n-1\)
\(3\left(n-1\right)+7⋮n-1\)
\(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Tự lập bảng ...
g,
Câu hỏi của Touka 0_0 - Toán lớp 6 - Học toán với OnlineMath
a)\(n+6⋮n\)
Mà \(n⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
Tự làm tiếp.
b)\(4n+5⋮n\)
Mà \(4n⋮n\)
\(\Rightarrow5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)\)
Tự làm tiếp.
c)\(38-3n⋮n\)
Mà \(3n⋮n\)
\(\Rightarrow38⋮n\)
\(\Rightarrow n\inƯ\left(38\right)\)
Tự làm tiếp.
Ủng hộ nhé.
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
a) (n + 3) : (n + 1) = 1 (dư 2)
Vậy để n + 3 chia hết cho n + 1 thì 1 chia hết cho n + 1
\(\Rightarrow\)n + 1 \(\in\)Ư(1) = {1}
\(\Rightarrow\)n + 1 = 1
\(\Rightarrow\)n = 0
Thử lại: (0 + 3) : (0 + 1) = 3 : 1 = 3 (chia hết)
Vậy n = 0 thì n + 3 chia hết cho n + 1
b) (4n + 3) : (2n - 1) = 2 (dư 5)
Vậy để 4n + 3 chia hết cho 2n - 1 thì 5 chia hết cho 2n - 1
\(\Rightarrow\)2n - 1 \(\in\)Ư(5) = {1; 5}
\(\Rightarrow\)2n - 1 = 1; 2n - 1 = 5
\(\Rightarrow\)n = 1; n = 3
Thử lại: (4 x 1 + 3) : (2 x 1 - 1) = 7 : 1 = 7 (chia hết)
(4 x 3 + 3) : (2 x 3 - 3) = 15 : 3 = 5 (chia hết)
Vậy n = 1; n = 3 thì 4n + 3 chia hết cho 2n - 1
c) (3n + 4) : (2n + 1) = 3/2 (dư 5/2)
Vậy để 3n + 4 chia hết cho 2n + 1 thì 5/2 chia hết cho 2n + 1
\(\Rightarrow\)2n + 1 \(\in\)Ư(5/2) = {1; 5/2}
\(\Rightarrow\)2n + 1 = 1; 2n + 1 = 5/2
\(\Rightarrow\)n = 0; n = 3/4 (loại vì n \(\in\)N)
Thử lại: (3 x 0 + 4) : (2 x 0 + 1) = 4 : 1 = 4 (chia hết)
Vậy n = 0 thì 3n + 4 chia hết cho 2n + 1
a) \(16.2^n=256\)
\(\Rightarrow2^n=256:16\)
\(\Rightarrow2^n=16\)
\(\Rightarrow2^n=2^4\)
\(\Rightarrow n=4\)
tíc mình nha