K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

nên ABOC là tứ giác nội tiếp

b: Xét ΔACD và ΔAEC có 

\(\widehat{ACD}=\widehat{AEC}\)

\(\widehat{CAD}\) chung

Do đó: ΔACD\(\sim\)ΔAEC

Suy ra: AC/AE=AD/AC
hay \(AC^2=AE\cdot AD\)

a) Gọi M là trung điểm của OA

Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(BM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(CM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: M là trung điểm của OA(gt)

nên \(OM=AM=\dfrac{OA}{2}\)(3)

Từ (1), (2) và (3) suy ra MA=MB=MO=MC

hay A,B,O,C cùng thuộc một đường tròn(đpcm)

b) Xét (O) có

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

⇔OA⊥BC

mà OA cắt BC tại H(gt)

nên OA⊥BC tại H(đpcm)

5 tháng 5 2022

A B C O D E H

a.XétΔABD và Δ ABE
BAE chung
ABD= AEB(cùng chắn cung BD)
=> ΔABD ~ Δ AEB(g-g)
\(\dfrac{AB}{AD}\)=\(\dfrac{AE}{AB}\)
=> AB.AB=AD.AE
=> AB²= AD.AE 
OBA=900(AB là tiếp tuyến)
OCA=900(AC là tiếp tuyến)
=>OA là đường trung trực của BC
=>OA vuông góc BC tại H
b. Ta có Δ OBA vuông tại B,đường cao BH
AB²=AH.AO (hệ thức lượng)
mà AB²=AD.AE(cmt)
=>AD.AE=AH.AO
Xét Δ ADH và Δ AEO
EAO chung
\(\dfrac{AD}{AO}\)=\(\dfrac{AH}{AE}\)(cmt)
=>Δ ADH ~ Δ AEO (c-g-c)
=>\(\widehat{AEO}\)=\(\widehat{AHD}\)
=>tứ giác OHDE nội tiếp( góc ngoài tứ giác nt= góc trong đối đỉnh)

 

21 tháng 6 2021

a) Chắc ý bạn là ODBA nội tiếp,chứ ODBC không nội tiếp được

Trong (O) có EF là dây cung không đi qua O có D là trung điểm EF

\(\Rightarrow OD\bot EF\Rightarrow\angle ODA=90\Rightarrow\angle ODA=\angle OBA\Rightarrow ODBA\) nội tiếp

b) KC cắt AB tại G

Vì BK là đường kính \(\Rightarrow\angle BCK=90\Rightarrow\Delta BCG\) vuông tại C

có \(AC=AB\Rightarrow A\) là trung điểm GB

mà \(CM\parallel GB(\bot BK)\) \(\Rightarrow I\) là trung điểm CM (Thales thôi,bạn tự chứng minh nha)

undefined

21 tháng 6 2021

thank :)

a: góc OBA+góc OCA=180 độ

=>OBAC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>AH*AO=AB^2

Xét ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH