xe du lịch và xe khách chạy từ A đến B. Biết vận tốc xe du lịch lớn hơn xe khách 20km/giờ,xe du lịch đến B trước xe khách 50 phút. Tính vận tốc mỗi xe, biết quãng đường là 100km.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi $50$ phút thành $\frac{5}{6}$ (h)
Gọi vận tốc xe khách là $a$ km/h thì vận tốc xe du lịch là $a+20$ km/h
Nếu như coi quãng đường 2 xe đi là $AB$ thì:
Thời gian xe khách đi: $\frac{AB}{a}$ (h)
Thời gian xe du lịch đi $\frac{AB}{a+20}$ (h)
Theo bài ra: $\frac{AB}{a}-\frac{AB}{a+20}=\frac{5}{6}$
Nếu đề bài yêu cầu tính vận tốc xe, thì đến đây bạn thay giá trị $AB$ vào để tính ra $a$.
Gọi \(x,y\) là vận tốc của xe khách và xe du lịch \(\left(x,y>0\right)\left(km/h\right)\)
\(36p=0,6h\)
Theo đề bài, ta có hệ pt :
\(\left\{{}\begin{matrix}x+13=y\\\dfrac{156}{x}-\dfrac{156}{y}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-13\\-156x+156y=0,6\end{matrix}\right.\)
\(\)Bai có đúng số không ấy, chứ mình ra vô nghiệm \(;-;\)
gọi vận tốc xe khách là x (km/h) (x>0)
vận tốc xe du lịch là x+20(km/h)
thời gian xe khách đi từ A đến khi gặp nhau là \(\frac{100}{x}\)(h)
thời gian xe du lịch đi từ B đến khi gặp nhau là \(\frac{100}{x+20}\)(h)
theo bài ra ta có phương trình: \(\frac{100}{x}\)= \(\frac{100}{x+20}\)+\(\frac{5}{6}\)
=> 600x+12000=600x + \(5x^2\)+100x
=> \(\hept{\begin{cases}x=40\left(tm\right)\\x=-60\left(L\right)\end{cases}}\)
Vậy vạn tốc xe khách là 40km/h
xe du lịch là 60km/h
Có chỗ mk lm ra kết quả luôn , hơi tắt 1 tí mog bn giải nốt
Gọi x ( km/h) là vận tốc xe du lịch (x>0)
=> x-20 (km/h) là vận tốc xe khách.
Thời gian xe du lịch đi hết quãng đường AB là: \(\frac{100}{x}\) (giờ).
Thời gian xe khách đi hết quãng đường AB là: \(\frac{100}{x-20}\)(giờ).
Theo đề bài, ta có phương trình:
\(\frac{100}{x-20}-\frac{100}{x}=\frac{5}{6}\)
<=> \(x=60\) (nhận)
Trả lời: Vận tốc xe du lịch là 60 (km/h).
Vận tốc xe khách là 40 (km/h).
thành đạt