Rút gọn biểu thức sau:
xn-1(x + y) - y(xn-1 - yn-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x – y) + y(x – y)
= x.x – x.y + y.x – y.y
= x2 – xy + xy – y2
= x2 – y2 + (xy – xy)
= x2 – y2
a: ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b: Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y^n\)
\(=x^n-y^n\)
a) x(x – y) + y(x – y) = x2 – xy + yx – y2 = x2 – xy + xy – y2 = x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 ) = xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn = xn - yn
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
xn - 1(x + y) - y(xn - 1 + yn - 1)
= xn - x + y - yxn - y2 n - 1
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
=\(x^n+x^{n-1}y-x^{n-1}y-y^n\)
=\(x^n-y^n\)
\(x\left(x-y\right)+y\left(x-y\right)\)
\(=x.x-x.y+y.x-y.y\)
\(=x^2-xy+yx-y^2\)
=\(x^2-y^2\)
Ta có
1 C n 2 + 7 C n 3 = 1 n ⇔ n ≥ 3 2 n n - 1 + 7 . 3 ! n n - 1 n - 2 = 1 n ⇔ n ≥ 3 n 2 - 5 n - 36 = 0 ⇔ n = 9
Suy ra a 8 là hệ số của x 8 trong khai triển 8 1 - x 8 + 9 1 - x 9
Vậy ta thu được a 8 = 8 . C 8 8 + 9 . C 9 8 = 89
Đáp án C
xn-1(x+y)-y(xn-1-yn-1)
=xn+xn-1.y-xn-1.y+yn
=xn+yn