1. cho x>0 y>0 thoả mãn 3x+3y=10\(\sqrt{xy}\)
Tính giá trị biểu thức M=\(\frac{x-2y}{x+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
\(\dfrac{x^2+y^2}{xy}=\dfrac{5}{2}\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow2x^2+2y^2-4xy-xy=0\)
\(\Leftrightarrow\left(2x^2-xy\right)-\left(4xy-2y^2\right)=0\)
\(\Leftrightarrow x\left(2x-y\right)-2y\left(2x-y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)
Ta có: \(x>y>0\Leftrightarrow x+x>y+0\Leftrightarrow2x>y\Leftrightarrow2x-y>0\)
Vậy \(x-2y=0\Leftrightarrow x=2y\)
\(E=\dfrac{3x+2y}{2x-3y}=\dfrac{6y+2y}{4y-3y}=\dfrac{8y}{y}=8\)
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)
\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)
\("="\Leftrightarrow x=2;y=4\)
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
\(3x+3y-10\sqrt{xy}=0\Leftrightarrow\left(3\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-3\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3\sqrt{x}=\sqrt{y}\\\sqrt{x}=3\sqrt{y}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=9x\\x=9y\end{cases}}\)
+TH1: \(y=9x\)
\(M=\frac{x-2.9x}{x+2.9x}=\frac{1-18}{1+18}\)
+TH2: \(x=9y\)
\(M=\frac{9y-2y}{9y+2y}=\frac{9-2}{9+2}\)