K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

-Sửa đề: Tìm cặp số x,y nguyên thỏa mãn: \(x^3+xy=1\)

\(x^3+xy=1\) (1)

\(\Leftrightarrow xy=1-x^3\)

\(\Leftrightarrow y=\dfrac{1-x^3}{x}\)

-Vì x,y nguyên nên từ đây suy ra:

\(\left(-x^3+1\right)⋮x\)

\(\Rightarrow1⋮x\)

\(\Leftrightarrow x=1\) hay \(x=-1\)

-Với \(x=1\) thì (1) trở thành:

\(1^3+1.y=1\Leftrightarrow y=0\left(nhận\right)\)

-Với  \(x=-1\) thì (1) trở thành:

\(\left(-1\right)^3+\left(-1\right).y=1\Leftrightarrow y=-2\left(nhận\right)\)

-Vậy các cặp số (x,y) nguyên là \(\left(1,0\right);\left(-1,-2\right)\)

24 tháng 4 2023

\(xy-\left(x+2y\right)=3\)
\(xy-x-2y=3\)
\(y\left(x-2\right)-x=3\)
\(y\left(x-2\right)-x+2=3+2\)
\(y\left(x-2\right)-\left(x-2\right)=5\)
\(\left(y-1\right)\left(x-2\right)=5\)
Ta có bảng sau:

\(y-1\)\(1\)\(5\)\(-1\)\(-5\)
\(x-2\)\(5\)\(1\)\(-5\)\(-1\)
\(y\)\(2\)\(6\)\(0\)\(-4\)
\(x\)\(7\)\(3\)\(-3\)\(1\)

Vậy các cặp \(\left(x;y\right)\) là \(\left(7;2\right);\left(3;6\right);\left(-3;0\right);\left(1;-4\right)\)

=>xy-x-2y=3

=>x(y-1)-2y+2=5

=>(x-2)(y-1)=5

=>\(\left(x-2;y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;6\right);\left(7;3\right);\left(1;-4\right);\left(-3;0\right)\right\}\)

DD
16 tháng 1 2022

\(x^3+xy-3x-y=5\)

\(\Leftrightarrow x^3-3x-5=y\left(1-x\right)\)

Với \(x=1\)không thỏa mãn. 

Với \(x\ne1\)

\(y=\frac{x^3-3x-5}{1-x}=\frac{\left(x-1\right)\left(x^2+x-2\right)-7}{1-x}=-\left(x^2+x-2\right)+\frac{7}{x-1}\)

Để \(y\inℤ\)thì \(\frac{7}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow x\in\left\{-6,0,2,8\right\}\)

Ta có các bộ \(\left(x,y\right)\)thỏa mãn là: \(\left(-6,-29\right),\left(0,-5\right),\left(2,3\right),\left(8,-69\right)\).

16 tháng 1 2022
4Km 25dm=bao nhiêu
DD
19 tháng 12 2022

\(xy+3x+y+3=7\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=7\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=7\)

Mà \(x,y\) là số nguyên nên \(x+1,y+3\) là các ước của \(7\).

Ta có bảng giá trị: 

x+1-7-117
y+3-1-771
x-8-206
y-4-104-2

 

8 tháng 4 2016

y=1 thì thấy vô lý.

 Nên x = y /y − 1 ∈ Z  

⇒ y⋮(y − 1)

⇒ y = 0 với  y − 1 = ±1

(x, y) ∈ {(0, 0),(2, 2)} 

thấy đúng thì k nha

8 tháng 4 2016

Ta có: x+y=xy \(\Rightarrow\)  -xy+x+y = 0 \(\Rightarrow\)  -xy+x+y-1 = -1

\(\Rightarrow\) (-xy+x)+(y-1) = -1

     -x(y-1)+(y-1) = -1

      (-x+1)(y-1) = -1  hay  (1-x)(y-1) = -1

\(\Rightarrow\) 1-x = -1 và y-1 = 1

      1-x = 1  và y-1 = -1

Vậy có 2 cặp (x;y) thỏa mãn là x=2 và y=2

                         hay x=0 và y=0

    

9 tháng 1 2018

x+y+xy=2

<=>x(y+1)+(y+1)=2+1

<=>(x+1)(y+1)=3

Ta có bảng:

x+11-1
y+13-3
x0-2
y2-4

Vậy các cặp (x;y) là (0;2);(-2;-4)

 

24 tháng 3 2018

ST còn thiếu hai trường hợp là x=2 y=0 hoặc x=-4 y=-2

6 tháng 8 2017

vi x va y la so nguyen

suy ra   ( y+1)( xy-1) cung la so nguyen

khi va chi khi     ( y+1)( xy-1)\(\in\)U(3)

   den day thi de rui nha

25 tháng 11 2023

Sử dụng phương pháp Delta cho bài toán này:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)

Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.

Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)

\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).

Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại) 

Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Vậy....

Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)

\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)

Đến đây ta xét các trường hợp:

Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)

Vậy...

 

 

27 tháng 11 2023

cảm ơn bạn nhưng còn hơi dài =))