K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

A B C D E F M N

Xét tam giác ADE và tam giác BCF có AD = BC (ABCD là hình bình hành)

Góc BAD = góc BCD , AE = CF = 1/2AB = 1/2CD 

=> tam giác ADE = tam giác BCF (c.g.c)

=> góc AED = góc CFB . Mà AB // CD => góc CFB = góc ABF

=> góc AED = góc ABF mà hai góc này ở vị trí đồng vị

=> DE // BF

Xét tam giác MCD có NF // MD , DF = FC => NF là đường trung bình tam giác MCD

=> MN = NC (1)

Tương tự , ta cũng có ME là đường trung bình của tam giác ANB

=> AM = MN (2)

Từ (1) và (2) suy ra AM = MN = NC (đpcm)

15 tháng 8 2016

thanks nhiều

 

30 tháng 6 2019

Vì EB= \(\frac{AB}{2}\)

DF= \(\frac{DC}{2}\)

Mà AB=CD (hình bình hành)

=> EB= DF

Tứi giác EBFD có

EB // DF; EB=DF nên là hbh

Do đó: ED// BF

Xét \(\Delta CDM\) có: DF=CF ; FN// DM nên NC= NM (1)

Xét \(\Delta ABN\)   có: AE=BE ; EM// BN nên MN= AM(2)

Từ (1) và (2) suy ra AM=MN=NC

Chúc bạn học tốt

Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF

Xét ΔABN có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

hay AM=MN(1)

Xét ΔDCD có 

F là trung điểm của CD

FN//MD

DO đó: N là trung điểm của MC

Suy ra: MN=NC(2)

Từ (1) và (2) suy ra AM=MN=NC

26 tháng 12 2020
Giúp mình đi mọi người
18 tháng 12 2022

a Xét tứ giác DEBF có

BE//DF

BE=FD

Do đó; DEBF là hình bình hành

=>DB cắt EF tại trung điểm của mỗi đường(1)

b: Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mõi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

=>E,O,F thẳng hàng

2 tháng 9 2021

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

a: Xét tứ giác DEBF có 

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét ΔCDM có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NM=NC(1)

Xét ΔANB có

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

Suy ra: AM=MN(2)

từ (1) và (2) suy ra AM=MN=NC

a: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

=>OB=OD

Ta có: OM=1/2OD

ON=1/2OB

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

Do đó: AMCN là hình bình hành

b: AMCN là hình bình hành

=>AM=CN và AM//CN và AN//CM và AN=CM

AM//CN

mà E thuộc tia đối của tia MA và F thuộc tia đối của tia NC

nên AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên DE=BF

a:

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

OM=OD/2

ON=OB/2

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

=>AMCN là hbh

b: Xét tứ giác AFCE có

AF//CE

AE//CF
=>AFCE là hbh

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên FB=ED