\(cho\frac{a}{b}=\frac{c}{d}.chungminh:\frac{a+2c}{b+2d}=\frac{a-3c}{b+3d}\)
Mong các bạn giúp đỡ mình nhé! thank you very much
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: - a/b=c/d=2c/2d => a/b=2c/2d
Áp dụng tỉ lệ thức ta có:
a/b=2c/2d=(a+2c)/(b+2d) (1)
- a/b=c/d=3c/3d =>a/b=3c/3d
Áp dụng tỉ lệ thức ta có:
a/b=3c/3d=(a-3c)/(b-3d) (2)
Từ (1) và (2) =>(a+2c)/(b+2d)=(a-2c)/(b-2d)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2