Giúp mk vs:(((
Giải bpt sau :(2-x)(2x-5l >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(\left(x^2+1\right)\left(4x-2\right)\ge0\)
Mà \(x^2+1\ge0+1>0\)
\(\Leftrightarrow4x-2\ge0\Leftrightarrow x\ge\frac{1}{2}\)
b.Ta có: \(\left(x-2\right)x^2>0\)
mà \(x^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ne0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>2\end{cases}\Leftrightarrow}x>2}\)
\[\left| {2x - 3} \right| > x + 1\\ \Leftrightarrow \left| {2x - 3} \right| - x > 1\\ T{H_1}:2x - 3 \ge 0 \Rightarrow x \ge {3 \over 2}\\ 2x - 3 - x > 1\\ \Leftrightarrow x - 3 > 1\\ \Leftrightarrow x > 4\left( {TM} \right)\\ T{H_2}:2x - 3 < 0 \Rightarrow x < {3 \over 2}\\ - \left( {2x - 3} \right) - x > 1\\ \Leftrightarrow - 2x + 3 - x > 1\\ \Leftrightarrow - 3x > - 2\\ \Leftrightarrow x < {2 \over 3}\left( {TM} \right)\]
3 - ( x2 + 2x )2 + 2x2 + 4x \(\ge\) 0 \(\Leftrightarrow\left(x^2+2x\right)^2+2\left(x^2+2x\right)-3\le0.\) Đặt t = x2 + 2x = (x + 1)2 - 1 , \(t\ge-1.\)
BPT trở thành : \(\hept{\begin{cases}t^2+2t-3\le0\\t=(x+1)^2-1\ge-1\end{cases}\Leftrightarrow\hept{\begin{cases}-3\le t\le1\\t\ge-1\end{cases}\Leftrightarrow}-1\le t\le1.}\)
Vậy ta có : \(-1\le x^2+2x\le1\Leftrightarrow x^2+2x-1\le0\Leftrightarrow-1-\sqrt{2}\le x\le-1+\sqrt{2}.\)
\(a,\frac{x+5}{x^2-2x+1}>0\)
\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)
\(\Leftrightarrow x>-5\)
\(b,x^2+x+1>0\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)
\(\left(2-x\right)\left(2x-5\right)\)
Th1 : \(\hept{\begin{cases}2-x>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< \frac{5}{2}\end{cases}}}\)
Th2 : \(\hept{\begin{cases}2-x< 0\\2x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>\frac{5}{2}\end{cases}}}\)