Cho \(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2017}\) . Chứng tỏ S không chia hết cho 65
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
tất cả các số hang cua dãy đều chia hết cho 5 nên S 3 chấm 65
S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012 (2012 số)
S = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +...+ (52009 + 52010 + 52011 + 52012) (503 nhóm)
S = (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) +....+ 52008(5 + 52 + 53 + 54)
S = 780 + 54.780 +...+ 52008.780
S = 780.(1 + 54 +...+ 52008) chia hết cho 65 (Vì 780 chia hết cho 65)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Để chứng tỏ S chia hết cho 65 cần chứng tỏ S chia hết cho 5 và 13
+) chứng minh S chia hết cho 5
Ta có:
5 chia hết cho 5
52 chia hết cho 5
53 chia hết cho 5
........................
52012chia hết cho 5
Vậy ta suy ra: S = 5+ 52+53+54+...+52011+52012 chia hết cho 5 (1)
+) chứng minh S chia hết cho 13
Tổng S có 2012 số, nhóm 4 số vào 1 nhóm thì ta vừa hết.
Ta có:
S=( 5+52+53+54) + (56+57+58+59) +...+ ( 52009+ 52010+52011+52012)
= 5(1+5+52+53)+56(1+5+52+53)+...+52009(1+5+52+53)
=(1+5+52+52)(5+56+...+52009)
= 156.(5+56+...+52009)chia hết cho 13(2)
Từ(1) và (2) ta suy ra S chia hết cho 5 và 13.
Mà ƯCLN(5;13)=1
Suy ra S chia hết cho 5.13=65
Vậy S chia hết cho 65.
\
cho S = 5 + 5^2 + 5^3 + 5^4 +... + 5^2011 + 5^2012 . chứng tỏ S chia hết cho 65
bạn nhóm 4 số lại một nhóm rồi đặt thừa số chung là được
K MÌNH NHA
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
Ta có :
\(S=5+5^2+5^3+...+5^{2016}+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right)\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)
Ta có :
\(5^4\text{≡}1\left(mod13\right)\)
\(\Rightarrow\left(5^4\right)^{504}\text{≡}1^{504}\left(mod13\right)\)
\(\Rightarrow5^{2016}\text{≡}\left(mod13\right)\)
\(\Rightarrow5^{2017}\text{≡}5\left(mod13\right)\)
Lại có :
\(\left(1+5^4+5^8+...+5^{2012}\right).65.12\text{ }\text{⋮}65\)
\(5^{2017}\)không chia hết cho 65
\(\Rightarrow\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)không chia hết cho 65
\(\Rightarrow S\)không chia hết cho 65
Vậy \(S\)không chia hết cho 65
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)+5^{2017}\)
\(S=130+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^{2014}\left(5+5^2\right)+5^{2017}\)
\(S=130+5^2.130+5^4.130+...+5^{2014}.130+5^{2017}\)
\(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)
Vì \(S=130\left(1+5^2+5^4+...+5^{2014}\right)\)chia hết cho 65 nhưng \(5^{2017}\)không chia hết cho 65
=> \(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)không chia hết cho 65
Vậy \(5+5^2+5^3+5^4+5^5+...+5^{2017}\)Không chia hết cho 65