( 5^6 + 5^5 + 5^4 + 2,5^3 + 5^2 + 5 + 1 ) chia hết cho 126
* Mong mọi người giúp nhanh *
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4\(^{2019}\)+ 1 = 4\(^{2016}\). 4\(^3\)+ 1 = ...6 . 64 + 1 = ....4 + 1 = ....5 \(⋮\) 5
(các số tận cùng là 4 khi nâng lũy thừa bậc 4n đều có chữ số tận cùng là 6)
a/ 4^2019 + 1
= (4^2)^1009 x 4 + 1
= (.....6)^1009 x 4 + 1
= .....6 x 4 + 1
= ......4 + 1
= .....5
Vì 4^2019 + 1 có tận cùng là 5
Suy ra 4^2019 + 1 chia hết cho 5
Vậy 4^2019 + 1 chia hết cho 5
b/ 5^2017 + 1
= ( 5^2 ) ^1008 x 5 + 1
= 25^1008 x 5 + 1
hay = 25.25.25....25 x 5 + 1 ( có tất cả 1008 thừa số 25 ) ......... Tự làm nha!
Cho S=5+52+53+...+52004 chứng minh S chia hết cho 126 và chia hết cho 65. Mong các bạn giúp đỡ mình!
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65
Tick nha
\(5^6+5^5+5^4+5^3+5^2+5+1\)
\(=19531\)\(⋮̸\) \(126\)
Vậy \(5^6+5^5+5^4+5^3+5^2+5+1\) không chia hết cho \(126\)
ta có \(S=\left(5^1+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{93}\right)\)\(^3\)\(+5^{96}\))
=5(1+5^3)+5^2(1+5^3)+...+5^93(1+5^3)
=126(5+5^2+...+5^93)
=> S chia hết cho 26
b) s có tận cùng là 0
= (5^6+5^3)+(5^5+5^2)+(5^4+5)+(5^3+1)
= (5^3+1).(5^3+5^2+5+1)
= 126.(5^3+5^2+5+1) chia hết cho 126
k mk nha
1/4 + 2/5 + 3/7 + 8/5 + 4/7 + 45/60
= (1/4 + 45/60) + (2/5+8/5) + (3/7+4/7)
= (1/4 + 3/4) + 2 + 1
= 1 + 2 + 1
= 4