CMR: abcabc:.37 dấu :. là dấu chia hết;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt
Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a
Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37 (1)
Mà abc chia hết cho 37 nên 10.abc chia hết cho 37 (2)
Từ (1) và (2) => bca chia hết cho 37
100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b
=cab +999(10a+b)=cab +37.27ab
Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37 (3)
Mà abc chia hết cho 37 nên 100abc chia hết cho 37 (4)
Từ (3) và (4)=> cab chia hết cho 37
Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37
Nhớ **** cho mình nhé
ta lấy số hàng đơn vị nhân 11 rồi lấy kết quả trừ với số tạo bởi các số liền trước, nếu hiệu chia hết cho 37 thì nó chia hết cho 37.
abcdeg = 1000.abc + deg
abcdeg = 999.abc + abc + def
abcdeg = 37.27.abc + abc + deg (*)
Từ (*) ta có:
abc + deg chia hết cho 37
vế phải chia hết cho 37 => vế trái chia hết 37
Kết luận abcdeg chia hết cho 37
Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.
P/S: Chúc bạn hok tốt !!!
ta có: abcabc = abc x 1000 + abc = abc x 1001
Ta thấy : 1001 chia hết cho 143
=> abc x 1001 chia hết cho 143
=> abcabc chia hết cho 143
HOK TOT
1.Câu c và d chia hết cho 6
2.a chia hết cho 2
b chia hết cho 5
c chia hết cho 2 và 5
d chia hết cho 2
3.a *=0;2;4;6;8
b *=0;5
c *=0
4.aaa=a.111=a.3.37 chia hết cho 37
abcabc=abc.1001=abc.91.11 chia hết cho 11
aaaaaa=a.111111=a.15873.7 chia hết cho 7
câu 5 mình ko biết nha bạn