Cho tam giác ABC có AB=40cm , AC=58cm, BC=42cm.Gọi AH là đường cao của tam giác ABC.
A) tính BH và AH
B)tính các tỉ số lượng giáx cua góc BAC
(giup mk voi )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
\(sinA=\dfrac{BC}{CA}=\dfrac{42}{58}=\dfrac{21}{29}\)
\(cosA=\dfrac{AB}{AC}=\dfrac{40}{58}=\dfrac{20}{29}\)
\(tanA=\dfrac{BC}{BA}=\dfrac{21}{20}\)
\(cotA=\dfrac{BA}{BC}=\dfrac{20}{21}\)
c: Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>\(BH\cdot58=40\cdot42=1680\)
=>\(BH=\dfrac{840}{29}\left(cm\right)\)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BA^2=AH\cdot AC\)
=>\(AH\cdot58=40^2=1600\)
=>\(AH=\dfrac{800}{29}\left(cm\right)\)
Xét ΔBHA vuông tại H có HE là đường cao
nên \(\left\{{}\begin{matrix}HE\cdot BA=HB\cdot HA\\BE\cdot BA=BH^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}HE\cdot40=\dfrac{840}{29}\cdot\dfrac{800}{29}\\BE\cdot40=\left(\dfrac{840}{29}\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}HE=\dfrac{16800}{841}\left(cm\right)\\BE=\dfrac{17640}{841}\left(cm\right)\end{matrix}\right.\)
Xét tứ giác BEHF có
\(\widehat{BEH}=\widehat{BFH}=\widehat{FBA}=90^0\)
=>BEHF là hình chữ nhật
=>\(BF=HE=\dfrac{16800}{841}\left(cm\right)\)
d: Xét tứ giác BPMQ có
\(\widehat{BPM}=\widehat{BQM}=\widehat{QBP}=90^0\)
=>BPMQ là hình chữ nhật
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: BH=CH=3cm
AH=căn 5^2-3^2=4cm
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
BD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5
=>DB=15cm; DC=20cm
b: AH=21*28/35=16,8cm
c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
a: \(\sin B=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\tan B=\dfrac{AC}{AB}=\dfrac{12}{5}\)
\(\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\)
a: Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm