Tìm \(a,b\in Z\) biết \(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)
\(=\dfrac{-3}{2\sqrt{x}+4}\)
Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)
\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)
hay \(0\le x< \dfrac{25}{4}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
a: \(1-\left(5\dfrac{4}{9}+a-7\dfrac{7}{18}\right):15\dfrac{3}{4}=0\)
=>\(\left(5+\dfrac{4}{9}+a-7-\dfrac{7}{18}\right):\dfrac{63}{4}=1\)
=>\(\left(a-2+\dfrac{1}{18}\right)=\dfrac{63}{4}\)
=>\(a-\dfrac{35}{18}=\dfrac{63}{4}\)
=>\(a=\dfrac{63}{4}+\dfrac{35}{18}=\dfrac{637}{36}\)
b: \(B=\left(\dfrac{2}{15}+\dfrac{5}{3}-\dfrac{3}{5}\right):\left(4\dfrac{2}{3}-2\dfrac{1}{2}\right)\)
\(=\dfrac{2+5\cdot5-3^2}{15}:\left(4+\dfrac{2}{3}-2-\dfrac{1}{2}\right)\)
\(=\dfrac{2+4^2}{15}:\left(2+\dfrac{2}{3}-\dfrac{1}{2}\right)\)
\(=\dfrac{18}{15}:\dfrac{13}{6}=\dfrac{6}{5}\cdot\dfrac{6}{13}=\dfrac{36}{65}\)
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
b/ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\dfrac{a}{d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{c+d+b}\right)^3\) (2)Từ (1) và (2)=>đpcm
1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)
\(\Rightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=45\)
\(\Rightarrow x^2+y^2-2xy=9\)
\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)
\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)
Vậy...
\(\dfrac{a}{9}-\dfrac{3}{b}=\dfrac{1}{18}\)
⇔ \(\dfrac{2a-1}{18}=\dfrac{3}{b}\)
⇒ \(\left(2a-1\right).b=18.3\)
⇔ \(\left(2a-1\right).b=54\)
Ta thấy \(2a-1\) là 1 số nguyên lẻ. Ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}2a-1=1\\b=54\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=1\\b=54\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}2a-1=3\\b=18\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=2\\b=18\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}2a-1=9\\b=6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}2a-1=27\\b=2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=14\\b=2\end{matrix}\right.\)
TH5: \(\left\{{}\begin{matrix}2a-1=-1\\b=-54\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=0\\b=-54\end{matrix}\right.\)
TH6: \(\left\{{}\begin{matrix}2a-1=-3\\b=-18\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-1\\b=-18\end{matrix}\right.\)
TH7: \(\left\{{}\begin{matrix}2a-1=-9\\b=-6\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-4\\b=-6\end{matrix}\right.\)
TH8: \(\left\{{}\begin{matrix}2a-1=-27\\b=-2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a=-13\\b=-2\end{matrix}\right.\)
Vậy \(\left(a,b\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right);\left(0;-54\right);\left(-1;-18\right);\left(-4;-6\right);\left(-13;-2\right)\right\}\)
lâu ngày k lm dạng này, k bt có đúng k nx. Nếu có gì sai sót xin thứ lỗi