Bài 1 : Cho A = ( 1+2+...+n ) - 7. Chứng minh rằng A không chia hết cho 10.
Mai mìh phải nộp rùi, giúp mìh với!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n=-5n chia hết cho 5 với mọi n thuộc Z(đpcm)
Ta có:
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2
=> n.(n + 1) + 1 không chia hết cho 2
=> A không chia hết cho 2 (đpcm)
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
Ủng hộ mk nha ^_-
\(A=n^2+n+1=n\left(n+1\right)+1\) \(\left(n\in N\right)\)
a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn
=>n(n+1) là số chẵn
=>n(n+1)+1 là số lẻ
=>A ko chia hết cho 2 (đpcm)
b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9
=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0
=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0
Hay n(n+1) có thể có tận cùng là: 0;2;6
=>n(n+1)+1 có thể có tận cùng là 1;3;7
=>A ko chia hết cho 5 (đpcm)
chứng minh rằng:
1961^1962+1963^1964+1965^1966+2 chia hết cho 7
làm giúp mìh theo cách đồng dư nka!:)
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
1+2+3+...+n = \(\frac{n\left(n+1\right)}{2}\)
A=\(\frac{n\left(n+1\right)}{2}\)-7
Để a chia hết cho 10 thì \(\frac{n\left(n+1\right)}{2}\) có tận cùng 7 tức là n(n+1) có tận cùng 4
vô lí vì tích 2 số liên tiếp chi có tận cùng là 0, 2, 6 nên A không chia hết cho 10
đề thiếu gì thì p bạn ạ