K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Lấy điểm I trong hình vuông ABCD sao cho tam giác IBC cân và có góc đáy bằng 15°. Ta tính được góc BIC = 150° 

Ta có: ΔIBC = ΔEAB ⇒ IB = EB 

Lại có: góc EBI = 90° - 15° - 15° = 60° 

⇒ ΔEBI đều 

⇒ IE = IB = IC 

⇒ ΔIEC cân tại I 

⇒ góc EIC = 360° - góc BIC - góc EIB = 360° - 150° - 60° = 150° 

Tam giác cân IEC có góc ở đỉnh bằng 150° nên góc ICE = 15° 

góc ECD = 90° - góc ICB - góc ICE = 90° - 15° - 15° = 60° 

Tương tự cho góc kia: góc EDC = 60° 

Vậy tam giác DEC đều.

2 tháng 5 2020

Có làm thì mới có bài, không làm muốn có bài thì chỉ ăn cơm ăn đầu lợn

24 tháng 11 2017

A B C M I

Do AB = AC nên tam giác ABC cân tại A

Mà AI là đường trung tuyến (do I là trung điểm của BC)

=> AI cũng là đường trung trực của tam giác ABC

Lại có: MB = MC (theo giả thiết) => M cách đều 2 đầu mút B và C của đoạn thẳng BC

                                               => M \(\in\)AI                         

                                              nên A , M , I thẳng hàng

7 tháng 8 2016

A B C M D E N P

Ta dựng các tam giác đều AMP , AMN , ACE , ABD , suy ra N,P,E,D cố định.

Dễ dàng chứng minh được \(\Delta APE=\Delta AMC\left(c.g.c\right)\) 

 \(\Rightarrow MC=PE\)\(AM=MP\)

Suy ra : \(AM+MC+BM=BM+MP+PE\ge BE\)(hằng số)

Tương tự , ta cũng chứng minh được \(AM=MN\)\(BM=DN\)

\(\Rightarrow AM+MC+MB=CM+MN+DN\ge CD\)(hằng số)

Suy ra MA + MB + MC đạt giá trị nhỏ nhất khi M là giao điểm của BE và CD.

Cần chú ý : Vì điều kiện các góc của tam giác nhỏ hơn 180 độ : 

\(\widehat{BAC}+\widehat{CAE}< 120^o+60^o=180\)

\(\widehat{BAC}+\widehat{BAD}< 120^o+60^o=180^o\)

nên BE cắt AC tại một điểm nằm giữa A và C , CD cắt AB tại một điểm nằm giữa A và B. Do đó tồn tại giao điểm M của CD và BE.

1 tháng 8 2016

em học lớp 7

4 tháng 12 2021

\(O=AC\cap BD\)

\(\left\{{}\begin{matrix}O\in AC\\AC\subset\left(SAC\right)\end{matrix}\right.\Rightarrow O\subset\left(SAC\right)\)

\(\left\{{}\begin{matrix}O\in BD\\BD\subset\left(SBD\right)\end{matrix}\right.\Rightarrow O\subset\left(SBD\right)\)

\(\Rightarrow\) O thuộc giao tuyến của \(\left(SAC\right)\) và \(\left(SBD\right)\).

\(\left\{{}\begin{matrix}S\subset\left(SAC\right)\\S\subset\left(SBD\right)\end{matrix}\right.\Rightarrow\) S thuộc giao tuyến của \(\left(SAC\right)\) và \(\left(SBD\right)\).

Vậy SO là giao tuyến của \(\left(SAC\right)\) và \(\left(SBD\right)\).