tìm số dư trong phép chia
(19971998+19981999+19992000) chia cho 111
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với n = 1 ta có:
Vế trái = 1. 4= 4.
Vế phải = 1.(1+ 1)2 = 4.
=> Vế trái = Vế phải. Vậy (1) đúng với n = 1.
+ Giả sử (1) đúng với n=k; k ∈ N*; tức là ta có:
1.4+2.7+⋅⋅⋅+k(3k+1)=k(k+1)2 (2)
Ta chứng minh nó cũng đúng với n= k+1. Có nghĩa ta phải chứng minh:
1.4+2.7+⋅⋅⋅+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2
+ Thật vậy do 1.4+ 2.7+ ...+ k. ( 3k+ 1) = k( k+1)2 nên
1.4+2.7+⋯+k( 3k+1)+( k+1).(3k+4)=k(k+1)2+(k+1)(3k+4)
= k( k2+2k+ 1)+ 3k2 + 4k+ 3k+ 4
= k3 + 2k2 + k+3k2 + 7k+ 4 = k3 + 5k2 + 8k+ 4 = (k + 1).(k + 2)2
Do đó (1) đúng với mọi số nguyên dương n.
Xét dãy số 19, 28, 37, 46,... dạng a1, a2, a3, ... ak, … an
Nhận xét:
Số hạng thứ nhất a1: 19 = 2× 9+1
Số hạng thứ hai a2: 28 = 3× 9+1
Số hạng thứ ba a3: 37 = 4× 9+1
Số hạng thứ tư a4: 46 = 5 × 9 + 1
………………….. ...……………..
………………….. ...……………..
Số hạng thứ n an: an = (n+1) × 9 + 1
a) Vậy, số hạng thứ 1997 của dãy số là: (1997 + 1) × 9 + 1 = 17983
b) Các số hạng trong dãy số đã cho chia cho 9 dư 1.
- Số 19971998 có tổng các chữ số bằng 53 nên chia cho 9 dư 8. Vậy số 19971998 không thuộc dãy số trên.
- Số 19981999 có tổng các chữ số bằng 55 nên số 19981999 chia cho 9 dư 1. Vậy số 19981999 thuộc dãy số trên.
Tổng các chữ số của A :
1 x 2016 = 2016
Mà 2016 có tổng các chữ số là 9; tức 2016 chia hết cho 9
Suy ra A chia hết cho 9.
Số dư : 0.
Ta có: 1 nhóm 9 chữ số 1 thì chia hết cho 9
Số nhóm 9 chữ số 1 là: 2016 : 9 = 224 (nhóm)
Vì 2016 chia hết cho 9, suy ra: A chia hết cho 9
Vậy: A : 9 có số dư là 0