Câu 3: Các giá trị số tự nhiên khác 0 thích hợp của x để có: x/5 < 4/5
A. 1 ;2
B. 0 ; 1; 2
C. 1; 2; 3
D. 0;1 ; 2; 3
GIÚP MÌNH VỚI Ạ!
AI NHANH VÀ ĐÚNG MÌNH TICK NHA!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1< \dfrac{x}{7}< \dfrac{10}{7}\)
\(1\times7< x< \dfrac{10}{7}\times7\)
\(7< x< 10\)
Vậy các số thích hợp là: 8,9
Chọn D
x/5<4/5
=>x<4
mà x là số tự nhiên khác 0
nên \(x\in\left\{1;2;3\right\}\)
a: ĐKXĐ: \(x\notin\left\{4\right\}\)
x2-3x=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thay x=0 vào A, ta được:
\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Thay x=3 vào A, ta được:
\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)
b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
c: Đặt P=A:B
ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)
P=A:B
\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)
\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)
Để P là số nguyên thì \(2x⋮x-4\)
=>\(2x-8+8⋮x-4\)
=>\(8⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)
Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t
Ta có x² - 3x = 0 suy ra x x (x - 3) = 0
x = 0; x = 3
Với x = 0 suy ra A = 5/4 v
Với x = 3 suy ra A = 2
Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)
Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8
x - 4 = 8 suy ra x = 4
x - 4 = 4 suy ra 2x = 0 loại
x - 4 = -1 suy ra x = 3 thỏa mãn
x - 4 = 1 suy ra x = 5 loại
x - 4 = 4 - 2x = 8 thỏa mãn
x - 4 = 8 suy ra x = 12 thỏa mãn
C
C