K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a^2+24là số chính phương ta có từ 2^1đến 2^4 loại (nhỏ hơn 24)

TA CÓ :2^5=32

2^6=64

2^7=128

2^8=256

2^9=512

2^10=1024

2^11=2048

vv...

vậy ta cộng lần lượt 24 với 2^5, 2^6TỚI 2^12 Đi

vậy là mình cũng tìm ra 32

32^2+24=1048=2^11

!

11 tháng 8 2016

tại sao 2^11= 2048  Mà bên dưới 32^2+24 =1048 =2^11

10 tháng 8 2016

a = 1 stupid thế  

10 tháng 8 2016

Đặng Quỳnh Ngân tui cần cách giải chứ cái đó tui cũng biết 

17 tháng 8 2016

1

17 tháng 8 2016

a = 10

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

NV
6 tháng 8 2021

Đặt \(A=2^4+2^7+2^n=144+2^n\)

Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow144+2^{2k}=m^2\)

\(\Rightarrow144=m^2-\left(2^k\right)^2\)

\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)

Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)

25 tháng 1 2022

tôi thấy  k=8^2,8^3,8^4.............