K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Xét ΔABC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình của ΔABC

=>EF//AC và \(EF=\dfrac{AC}{2}\)

Xét ΔCDA có

G,H lần lượt là trung điểm của CD,DA

=>GH là đường trung bình của ΔCDA

=>GH//AC và \(GH=\dfrac{AC}{2}\)

Ta có: EF//AC

GH//AC

Do đó: EF//GH

Ta có: \(EF=\dfrac{AC}{2}\)

\(GH=\dfrac{AC}{2}\)

Do đó: EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

b: Xét ΔBAD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔBAD

=>\(EH=\dfrac{BD}{2}\)

mà BD=AC

và EF=AC/2

nên EH=EF

Hình bình hành EFGH có EF=EH

nên EFGH là hình thoi

=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành

b: EF=GH=AC/2=3(cm)

FG=EH=BD/2=4(cm)

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔBAC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

b: AB+BC>AC

AD+DC>AC

Do đó: AB+BC+AD+DC>2AC

AB+AD>BD

CB+CD>BD

DO đó:AB+AD+CB+CD>2BD

=>\(2\cdot C_{ABCD}>2\cdot\left(AC+BD\right)=2\cdot12=24\)

=>CABCD>12

Gọi O là giao điểm của AC và BD

image

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2

Từ (1) và (2) suy ra MNPQ là hình bình hành

\(C_{MNPQ}=MN+MQ+PQ+MN=AC+BD=12cm\)

30 tháng 11 2017

Tổng độ dài hai cạnh AB và BC là

  16 + 20 = 36 (m)

Độ dài cạnh CD là

  36 : 2 = 18 (cm)

Hiệu độ dài hai cạnh AB và BC là

  20 – 16 = 4 (cm)

Độ dài cạnh AD là

  4 x 2 = 8 (cm)

Chu vi tứ giác ABCD là

  16 + 30 + 18 + 8 = 72 (cm)

    Đáp số: 72 cm