cho tam giác ABC cân AB=10cm,HC=6cm ,a) tính AH ,B)kẻ HK vuông góc với AB, k thuộc AB ,HI vuông góc với AC I thuộc AC Chứng minh tam giác AKI cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=25/7
=>BD=75/7cm; CD=100/7cm
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
c: AI*AB=AK*AC
=>AI/AC=AK/AB
=>ΔAIK đồng dạng với ΔACB
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC
`a)`
+, Có `Delta ABC` cân tại `A(GT)=>hat(ABC)=hat(ACB)`
hay `hat(KBC)=hat(HCB)`
Xét `Delta BHC` và `Delta CKB` có :
`{:(hat(H_1)=hat(K_1)(=90^0)),(BC-chung),(hat(HCB)=hat(KBC)(cmt)):}}`
`=>Delta BHC=Delta CKB(c.h-g.n)(đpcm)`
+, Có `Delta BHC=Delta CKB(cmt)`
`=>HC=BK` ( 2 cạnh t/ứng )
mà `AB=AC(Delta ABC` cân tại `A)`
nên `AB-BK=AC-CH`
hay `AK=AH`
`=>Delta AHK` cân tại `A(đpcm)`
`b)`
Có `Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2` (1)
`Delta AHK ` cân tại `A(cmt)=>hat(K_2)=(180^0-hat(A))/2` (2)
Từ (1) và (2) suy ra :
`hat(ABC)=hat(K_2)`
mà `2` góc này ở vị trí Đồng vị
nên `KH////BC(đpcm)`
các bạn ơi giúp mình với ạ nhờ các bạn giúp nhanh chứ mai mình thi rồi
mau
đề có đúng ko bn