cho tam giác ABC cân tại A nội tiếp (O). Kẻ đường kính AD. Gọi M, I lần lượt là trung điểm của AC, OD. Cm:
1. OM//DC.
2. tam giác ICM cân
3. BM cắt AD tại N. cm IC bình =IA.IN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.
b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)
suy ra IC = KC ( Liên hệ giữa cung và dây)
Vậy nên tam giác IKC cân tại C.
c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)
Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.
d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).
Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.
P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a: góc AMB=góc AHB=90 độ
=>AMHB nội tiếp
b:góc AFD=góc ADC=góc ABC
Xét ΔABC và ΔAFD có
góc AFD=góc ABC
góc A chung
=>ΔABC đồng dạng với ΔAFD
=>AB/AF=AC/AD
=>AB*AD=AF*AC
a, Xét đường tròn (O) có: OM là trung tuyến ứng với AC; AC là dây ko đi qua tâm
\(\Rightarrow\) OM \(\perp\) AC (quan hệ vuông góc giữa đk và dây) (1)
Xét đường tròn (O) có: \(\Delta\)ACD nội tiếp; AD là đường kính
\(\Rightarrow\) \(\Delta\)ACD vuông tại C (sự xđ đường tròn)
\(\Rightarrow\) DC \(\perp\) AC (2)
Từ (1); (2) \(\Rightarrow\) OM//DC (quan hệ từ vuông góc đến //)
Chúc bn học tốt!
1) Vì AD là đường kính của (O) nên O là trung điểm của AD
Xét ΔADC có
O là trung điểm của AD(cmt)
M là trung điểm của AC(gt)
Do đó: OM là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
hay OM//DC(Định lí 2 về đường trung bình của tam giác)