Chứng minh các đa thức sau không âm với mọi giá trị của biến:
A=x2 +2y2 - 2xy+4x-2y+15
B=3x2+14y2-12xy+6x-8y+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T=M−N=12x2−16xy+18y2−3x2+16xy−14y2
=9x2+4y2
Mà 9x2> 0 ; 4y2> 0 => T=9x2+4y2> 0
Vậy T không nhận giá trị âm x và y
T=M−N=12x2−16xy+18y2−3x2+16xy−14y2T=M−N=12x2−16xy+18y2−3x2+16xy−14y2
=9x2+4y2=9x2+4y2
Mà {9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y{9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y
Vậy T không nhận giá trị âm ∀x,y∀x,y
a) \(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le11< 0\)
b) \(-2x^2+4x-9=-2\left(x^2-2x+1\right)-7=-2\left(x-1\right)^2-7\le-7< 0\)
c) \(xy-x^2-y^2-1=-\dfrac{1}{2}\left(2x^2+2y^2-2xy+2\right)=-\dfrac{1}{2}\left[\left(x-y\right)^2+x^2+y^2+2\right]< 0\)
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a: C=-2x^4+3x^2y-2xy+y^2+7
Bậc là 4
b: B=5x^4-3x^2y+2xy+y^2
D=-2x^4+3x^2y-2xy+y^2+7+5x^4-3x^2y+2xy+y^2
=3x^4+2y^2
E=-2x^4+3x^2y-2xy+y^2+7-5x^4+3x^2y-2xy-y^2
=-7x^4+6x^2y-4xy+7
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
\(A=x^2+2y^2-2xy-2y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+14>14>0\)
Vậy : \(A>0\)