tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}\)+Ix+y+zI=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)
Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)
=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)
=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\)
Ta thấy: \(\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\)
\(\Rightarrow\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-\sqrt{2}\right|=0\\\left|y+\sqrt{2}\right|=0\\\left|x+y+z\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}+\left(-\sqrt{2}\right)+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x+y=-z\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x=-z-y\end{cases}}\)