K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

                                GIải

Nếu A , B ,C  thẳng hàng và A,B,D thẳng hàng

=> 4 điểm A,B,C,D thẳng hàng

Vậy thì B,C,D cũng thẳng hàng

b) Nếu ba điểm A,B,C thẳng hàng và  A,B,D không thẳng hàng 

=> D không thẳng hàng với A,B,C

Vậy B,C,D cũng không thẳng hàng 

23 tháng 6 2021

Xét \(\Delta DFM\) vuông tại F có \(\angle FDM=45\Rightarrow\Delta DFM\) vuông cân tại F

\(\Rightarrow DF=FM\)

Vì \(\angle MFA=\angle MEA=\angle EAF=90\Rightarrow AEMF\) là hình chữ nhật

\(\Rightarrow AE=FM=DF\)

Xét \(\Delta DCF\) và \(\Delta ADE:\) Ta có: \(\left\{{}\begin{matrix}AD=CD\\DF=AE\\\angle DAE=\angle CDF=90\end{matrix}\right.\)

\(\Rightarrow\Delta DCF=\Delta ADE\left(c-g-c\right)\Rightarrow DE=CF\)

b) \(\Delta DCF=\Delta ADE\Rightarrow\angle DCF=\angle ADE\)

\(\Rightarrow\angle DCF+\angle DFC=\angle ADE+\angle DFC\Rightarrow\angle ADE+\angle DFC=90\)

\(\Rightarrow DE\bot FC\)

Tương tự chứng minh được: \(BF\bot CE\)

Gọi giao điểm của DE,BF là H \(\Rightarrow H\) là trực tâm tam giác CEF

\(\Rightarrow CH\bot EF\left(1\right)\)

FM cắt CB tại G,CM cắt AD tại I

Dễ dàng chứng minh được DCFG là hình chữ nhật

\(\Rightarrow CG=DF=AE\)

Ta có: \(MG=FG-FM=CD-FD==AD-FD=AF\)

Xét \(\Delta CMG\) và \(\Delta EFA:\) Ta có: \(\left\{{}\begin{matrix}MG=AF\\AE=CG\\\angle CGM=\angle EAF=90\end{matrix}\right.\)

\(\Rightarrow\Delta CMG=\Delta EFA\left(c-g-c\right)\Rightarrow\angle AFE=\angle CMG=\angle FMI\)

\(\Rightarrow\angle AFE+\angle FIM=\angle FMI+\angle FIM\Rightarrow\angle AFE+\angle FIM=90\)

\(\Rightarrow CM\bot EF\left(2\right)\)

Từ (1) và (2) \(\Rightarrow C,H,M\) thẳng hàng \(\Rightarrow\) đpcmundefined

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a)  ABCD là hình bình hành nên \(\overrightarrow {DC}  = \overrightarrow {AB} \)

\( \Rightarrow \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {BA}  + \overrightarrow {AB}  = \overrightarrow {BB}  = \overrightarrow 0 \)

b) \(\overrightarrow {MA}  + \overrightarrow {MC}  = \left( {\overrightarrow {MB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {MD}  + \overrightarrow {DC} } \right)\)

\(= \left( {\overrightarrow {MB}  + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BA}  + \overrightarrow {DC}} \right)\)

\(= \overrightarrow {MB}  + \overrightarrow {MD} \) (Vì \(\overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow {0} \))

 

4 tháng 11 2018

Đáp án C

Vì OA, OB, OC đôi một vuông góc với nhau  1 d 2 = 1 O A 2 + 1 O B 2 + 1 O C 2

Với d là khoảng cách từ  O  -> (ABC) suy ra  1 d 2 = 1 a 2 + 1 b 2 + 1 c 2

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức, ta có     x 2 a + y 2 b + z 2 c ≥ x + y + z 2 a + b + c

Vậy  d   m a x   = 1 3

22 tháng 3 2023

Bạn xem lại câu b) nha vì BA ko = BM được đâu

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là trung trựccủaCB

b: SỬa đề; BM=CM

AH là trung trực của BC

=>M nằm trên đường trung trực của BC

=>MB=MC

30 tháng 9 2016

Hỏi thánh

10 tháng 11 2016

vi A,B,C thang hang nen B nam giua A va C nen AB+BC=AC

Do do ta chi can biet duoc do dai cua 2 doan la ta co the tim duoc do dai cua ca 3 doan

nho tk mik nha