cho hệ phương trình{ x+my= m+1
mx+y=3m-1
tìm m để hpt No duy nhất mà x=|y|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx+y=m\\mx+m^2y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+y=m\\\left(m^2-1\right)y=0\end{matrix}\right.\)
Hệ đã cho có nghiệm duy nhất \(\Leftrightarrow m^2-1\ne0\)
\(\Leftrightarrow m\ne\pm1\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+m^2y=m^2+m\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2-1\right)=m^2+m-3m+1\\x+my=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-2m+1}{\left(m-1\right)\left(m+1\right)}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\cdot\left(m+1\right)}=\dfrac{m-1}{m+1}\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-\dfrac{m^2-m}{m+1}=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
Để x,y đều là số nguyên thì \(\left\{{}\begin{matrix}m-1⋮m+1\\3m+1⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m+1-2⋮m+1\\3m+3-2⋮m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2⋮m+1\\-2⋮m+1\end{matrix}\right.\)
=>\(m+1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{0;-2;1;-3\right\}\)
mà \(m\notin\left\{1;-1\right\}\)
nên \(m\in\left\{0;-2;-3\right\}\)
a: Thay m=-2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)
\(x^2-y^2=4\)
=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)
=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)
=>\(8m^2+8m+2=4\left(m+1\right)^2\)
=>\(8m^2+8m+2-4m^2-8m-4=0\)
=>\(4m^2-2=0\)
=>\(m^2=\dfrac{1}{2}\)
=>\(m=\pm\dfrac{1}{\sqrt{2}}\)
Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)
Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :
\(m\left(m+1-my\right)+y=3m-1\)
\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)
Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.
Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.
Xét với \(m\ne1\) và \(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)
\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)
Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)
Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được
\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)
Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)
Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)
Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=m^2-2m+1\end{matrix}\right.\)
Với m = 1 ta có: \(\left\{{}\begin{matrix}x=2-y\\0y=0\left(VSN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô số nghiệm
Với m = -1 ta có: \(\left\{{}\begin{matrix}x=y\\0y=4\left(VN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô nghiệm
Với m \(\ne\) \(\pm\)1 ta có: \(\left\{{}\begin{matrix}x=m+1-my\\y=\dfrac{m^2-2m+1}{m^2-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-\dfrac{m\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=m+1-\dfrac{m\left(m-1\right)}{m+1}=m+1-\dfrac{m^2-m}{m+1}\\y=\dfrac{m^2-2m+1}{m^2-1}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=\dfrac{m-1}{m+1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất x = ..; y = ... với x \(\ne\) \(\pm\) 1
Ta có: x = |y|
\(\Leftrightarrow\) \(\dfrac{3m+1}{m+1}=\left|\dfrac{m-1}{m+1}\right|\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\dfrac{3m+1}{m+1}=\dfrac{m-1}{m+1}\\\dfrac{3m+1}{m+1}=\dfrac{1-m}{m+1}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}3m+1=m-1\\3m+1=1-m\end{matrix}\right.\) (Vì m \(\ne\) -1)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2m=-2\\4m=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=-1\\m=0\end{matrix}\right.\)
Vì m \(\ne\) -1 nên m = -1 KTM
\(\Rightarrow\) m = 0 thỏa mãn đk
Vậy m = 0
Chúc bn học tốt!