so sanh A va B biet:
A=2008^2008+1/2009^2009+1
B=2008^2007+1/2008^2008+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
\(\frac{2007}{2008}>\frac{2007}{2008+2009}\\ \frac{2008}{2009}>\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007}{2008+2009}+\frac{2008}{2008+2009}\\ \Rightarrow\frac{2007}{2008}+\frac{2008}{2009}>\frac{2007+2008}{2008+2009}\\ \Rightarrow M>N\)
https://hoidap247.com/cau-hoi/1164346
Tham khảo vào nhé?
Bài này hơi dài nên bạn bấn vào đây để xem lời giải Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)