so sánh phân số \(\frac{7}{12}\)với \(\frac{1}{31}\)+\(\frac{1}{32}\)+\(\frac{1}{33}\)+\(\frac{1}{60}\)help me mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề ài ta có, M=1/31+1/32+1/33+.......+1/60, ta sẽ phân tích M thành phân số lớn hơn.
Vậy phân số lớn hơn M là 1/30+1/31+1/32+......+1/60
Có: (1/30+1/30+1/30+....+1/30)+(1/40+1/40+....+1/40)+(1/50+1/50+....+1/50)=1/3+1/4+1/5=47/60
Vì 47/60 lớn hơn M mà bé hơn 4/5 nên M bé hơn 4/5.(tính chất bắc cầu)
ớ chết, mk nhầm, lm lại nha
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)
=> \(S< \frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S< 30.\frac{1}{60}\)
\(S< \frac{1}{2}< \frac{4}{5}\)
\(S< \frac{4}{5}\)
Câu hỏi của Quỳnh Anh - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo câu 1 2 cách 2 bạn hướng dẫn nhé!
1/31 đến 1/90 có 60 số hạng mà 1/31 là lớn nhất nên ta lấy 1/31*60=60/31 < 2
A: có 30 số hạng không đủ
phải chia nhỏ ra
\(A=\left(\frac{1}{31}+...+\frac{1}{36}\right)+\left(\frac{1}{37}+..+\frac{1}{48}\right)+\left(\frac{1}{49}+..+\frac{1}{60}\right)\)
\(A>\left(\frac{6}{36}\right)+\left(\frac{12}{48}\right)+\left(\frac{12}{60}\right)=\frac{3}{12}+\frac{3}{12}+\frac{1}{12}=\frac{7}{12}\)