: Cho tam giác ABC cân tại A. Kẽ AH vuông góc BC.
a)Cm:
b)Kẽ HE vuông góc AB , HF vuông góc AC. Cm : HE = HF
c)Trên tia đối tia HE lấy điểm D sao cho HE = HD. Cm : HD vuông góc CD.
làm hộ em câu c với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)
Mà H thuộc EF và HD=HF(theo đề bài)
=>HE=HD=HF=DF/2
Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.
a: ΔABC vuông tại A
b: góc B=2/3*90=60 độ
góc C=90-60=30 độ
Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
góc B=60 độ
=>ΔABD đều
=>góc DAB=60 độ
=>góc DAC=góc DCA
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>DH=DE
ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017
a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:
AH là cạnh chung
AB = AC ( \(\Delta ABC\)cân tại A)
BH = CH ( H là trung điểm của BC)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)
Xét \(\Delta ABC\)cân tại A ta có:
AH là đường trung tuyến ( H là trung điểm của BC)
\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)
\(\Rightarrow AH⊥BC\)tại H.
b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:
BH = CH ( H là trung điểm của BC)
\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)
\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)
c) Ta có:
AB = AC (\(\Delta ABC\)cân tại A)
BD = CE ( cmt)
\(\Rightarrow AB-BD=AC-CE\)
\(\Rightarrow AD=AE\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)
Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Nên \(\widehat{ADE}=\widehat{ABC}\)
Mặt khác 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)DE // BC.
d) Nối A với I.
Ta có:
\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)
\(\Rightarrow HE=EN+ME\)
\(\Rightarrow HE=MN\)
Xét \(\Delta AEN\)vuông tại E ta có:
\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)
\(\Rightarrow AN^2=AD^2+HM^2\)
\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)
\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)
\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)
\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)
\(\Rightarrow AN^2=AI^2-NI^2\)
\(\Rightarrow AI^2=AN^2+NI^2\)
\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)
\(\Rightarrow IN⊥AN\)tại N.
Bài làm:
a) Xét tam giác ABH và tam giác ACH có:
Góc AHC = góc AHB = 90o
AB = AC
Vì AB = AC => tam giác ABC cân tại A => Góc B = góc C
Vậy tam giác ABH = tam giác ACH (c.huyền - góc nhọn)
=> HB = HC = 8 : 2 = 4 cm
Áp dụng định lí Py Ta go cho tam giác ABH vuông tại H ta có:
HA2 + HB2 = AB2
HA2 = AB2 - HB2
= 52 - 42 = 9
=> AH = \(\sqrt{9}=3cm\)
b) Xét tam giác DBH và tam giác ECH có:
BH = CH (chứng minh ở câu a)
Góc D = góc E = 90o
Góc B = góc C
Vậy tam giác DBH = tam giác ECH (c,huyền - g.nhọn)
=> HD = HE (2 cạnh tương ứng)
=> Tam giác HDE cân (tại H)
c) Vì tam giác DHB vuông tại D nên:
BH là cạnh lớn nhất (c.huyền)
=> BH > DH mà BH = CH
=> CH > DH
d) Vì GH = 1/3AH => G là trọng tâm của tam giác ABC
=> BN là đường trung tuyến
=> NA = NC
e) Ta có: GH = 1/3AH = 1/3 . 3 = 1 cm
Áp dụng định lí Py Ta Go cho tam giác GBH vuông tại H ta có:
HG2 + HB2 = BG2
BG2 = 12 + 42 = 17
=> BG = \(\sqrt{17}cm\)
Ta lại có: BG = 2/3 BN
=> BN = \(\frac{BG}{\frac{2}{3}}=\sqrt{17}.\frac{3}{2}=\frac{3\sqrt{17}}{2}cm\)
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>HE=HF
c: Xét ΔFED có
FH là trung tuyến
FH=ED/2
=>ΔFED vuông tại F
=>FE vuông góc FD
=>FD vuông góc HC
ΔHFD cân tại H có HC là đường cao
nên HC là phân giác của góc FHD
Xét ΔHFC và ΔHDC có
HF=HD
góc FHC=góc DHC
HC chung
=>ΔHFC=ΔHDC
=>góc HDC=góc HFC=90 độ
=>HD vuông góc DC