K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

\(\frac{1}{3}x^3\) nha mik vt nhầm

20 tháng 3 2020

1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)

Để P có GTLN thì 6-m đạt giá trị nhỏ nhất

=> 6-m=1

=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất

a) Ta có: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}}{x+1}\right)\)

\(=\left(\frac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{2}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right):\left(\frac{x+1}{x+1}-\frac{\sqrt{x}}{x+1}\right)\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}:\frac{x+1-\sqrt{x}}{x+1}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\frac{x+1}{x-\sqrt{x}+1}\)

\(=\frac{x-1}{\sqrt{x}-1}\cdot\frac{1}{x-\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

12 tháng 10 2017

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)(1)

Ta lại có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

=> \(a\left(a+b+c\right)< \left(a+c\right)\left(a+b\right)\)

<=> 0<bc( đúng)

CMTT: \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(2)

Từ (1) và (2) => Tổng đó \(\notin Z\)

15 tháng 10 2017

hjcftgjc

25 tháng 11 2019

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

+ Thay \(x=\frac{16}{9}\) vào A, ta được:

\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}-1}}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7.\)

+ Thay \(x=\frac{25}{9}\) vào A, ta được:

\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}-1}}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4.\)

Vậy với \(x=\frac{16}{9}\)\(x=\frac{25}{9}\) thì A có giá trị là số nguyên (đpcm).

Chúc bạn học tốt!

25 tháng 7 2019
https://i.imgur.com/8x4O35p.jpg
25 tháng 7 2019

cần chứng minh M > 0 nữa mới đc kết luận:D (mặc dù điều này là hiển nhiên) nhưng mình nghĩ cũng nên ghi thêm vào

3 tháng 8 2019

\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)

Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)