10x+3/12=1+6+8x/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10x + 3/12 = 1 + 6 + 8x/9
<=> 10x + 3/2 = 7 + 3x/9
<=> 180x + 27 = 126 + 16x
<=> 180x - 16x = 126 - 27
<=> 164x = 99
<=> x = 99/164
1
a) 2x + 3 (đã rút gọn)
b) 5(6 - x^4) = 30 - 5x^4
c) 12(4x + 4)12 = 48x + 48
d) 7x . 8x - 9x - 9 = 56x^2 - 9x - 9
e) 8 - x^3 (đã rút gọn)
f) 6x + 8x . 1 = 6x + 8x = 14x
g) 9 . 10x - 8 + 7 = 90x - 8 + 7 = 90x - 1
h) 7x + 9 + 8x - 1 = 15x + 8
2
a) 2^10 : 8^2 = (2^10) / (8^2) = (2^10) / (2^6) = 2^(10-6) = 2^4 = 16
b) 125 : 5^2 = 125 / (5^2) = 125 / 25 = 5
c) 64^2 : 2^3 . 8^7 = (64^2) / (2^3 . 8^7) = (2^6)^2 / (2^3 . (2^3)^7) = 2^12 / (2^3 . 2^21) = 2^(12 - 3 - 21) = 2^(-12)
d) 3^4 : 9 = 81 / 9 = 9
e) 8^2 . 4^2 = (8^2) . (4^2) = 64 . 16 = 1024 f) 5^2 . 10^2 : 5^2 = (5^2) . (10^2) / (5^2) = 100 / 1 = 100
3
A) Để tìm ƯC(12; 136) có thể chuyển sang lũy thừa, ta phân tích 12 và 136 thành các thừa số nguyên tố: 12 = 2^2 * 3 136 = 2^3 * 17 ƯC(12; 136) = 2^2 = 4
B) Để tìm ƯC(25; 300) với điều kiện ƯC chia hết cho 3 và 9, ta phân tích 25 và 300 thành các thừa số nguyên tố: 25 = 5^2 300 = 2^2 * 3 * 5^2 ƯC(25; 300) = 5^2 = 25 (vì 25 chia hết cho 3 và 9)
C) Để tìm BC(17; 221) với điều kiện là số lẻ và là hợp số, ta phân tích 17 và 221 thành các thừa số nguyên tố: 17 = 17^1 221 = 13 * 17 BC(17; 221) = 17 (vì 17 là số lẻ và là hợp số)
D) Để tìm BC(10; 15) với điều kiện ƯC < 150 và là số nguyên tố, ta phân tích 10 và 15 thành các thừa số nguyên tố: 10 = 2 * 5 15 = 3 * 5 BC(10; 15) = 5 (vì 5 là số nguyên tố và ƯC < 150)
4
a) Để tính S, ta có thể nhận thấy rằng các số mũ của 4 tăng dần từ 2 đến 99. Vậy ta có thể viết lại S như sau: S = 1 * 4^2 * 4^3 * 4^4 * ... * 4^98 * 4^99 = 4^(2 + 3 + 4 + ... + 98 + 99) = 4^(2 + 3 + 4 + ... + 99 + 100 - 1) = 4^(1 + 2 + 3 + ... + 100 - 1) = 4^(100 * 101 / 2 - 1) = 4^(5050 - 1) = 4^5049
b) Để chứng minh rằng S chia hết cho 1024, ta cần chứng minh rằng S chia hết cho 2^10 = 1024. Ta có: S = 4^5049 = (2^2)^5049 = 2^(2 * 5049) = 2^10098 Ta thấy rằng 10098 chia hết cho 10 (vì 10098 = 1009 * 10), nên ta có thể viết lại S như sau: S = 2^(2 * 5049) = 2^(2 * 1009 * 10) = (2^10)^1009 = 1024^1009 Vậy S chia hết cho 1024.
5
a) Để xác định thời điểm người đi ô tô bắt kịp bác An, ta cần tính thời gian mà cả hai đã đi. Thời gian mà bác An đã đi: t1 = quãng đường / vận tốc = 60 km / 40 km/h = 1.5 giờ Thời gian mà người đi ô tô đã đi: t2 = quãng đường / vận tốc = 60 km / 80 km/h = 0.75 giờ Vì người đi ô tô đã xuất phát sau bác An, nên thời gian mà người đi ô tô bắt kịp bác An sẽ là thời gian mà cả hai đã đi cộng thêm thời gian nghỉ của bác An: t = t1 + t2 + 15 phút = 1.5 giờ + 0.75 giờ + 15 phút = 2.25 giờ + 0.25 giờ = 2.5 giờ Vậy, người đi ô tô sẽ bắt kịp bác An sau 2.5 giờ.
b) Để tính quãng đường từ A đến B, ta chỉ cần tính tổng quãng đường mà cả hai đã đi: quãng đường từ A đến B = quãng đường của bác An + quãng đường của người đi ô tô = 60 km + 60 km = 120 km Vậy, quãng đường từ A đến B là 120 km.
Xin lỗi bạn,mk ms học đến phân tích đa thức thành nhân tử nhóm nhiều hạng tử,còn phần này mk ms học còn yếu lắm.
1. \(-10x^2+11x+6\)
\(=-10x^2+15x-4x+6\)
\(=-5x\left(2x-3\right)-2\left(2x-3\right)\)
\(=\left(-5x-2\right)\left(2x-3\right)\)
2.\(10x^2-4x-6\)
\(=2\left(5x^2-2x-3\right)\)
\(=2\left(5x^2+3x-5x-3\right)\)
\(=2\left[x\left(5x+3\right)-\left(5x+3\right)\right]\)
\(=2\left(x-1\right)\left(5x+3\right)\)
3. \(10x^2+7x-6\)
\(=10x^2+12x-5x-6\)
\(=2x\left(5x+6\right)-\left(5x+6\right)\)
\(=\left(2x-1\right)\left(5x+6\right)\)
4. \(10x^2-14x-12\)
\(=2\left(5x^2-7x-6\right)\)
\(=2\left(5x^2+3x-10x-6\right)\)
\(=2\left[x\left(5x+3\right)-2\left(5x+3\right)\right]\)
\(=2\left(x-2\right)\left(5x+3\right)\)
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
(10x+3)/12= 1+ (6+8x)/9
(10x+3)*9/36= 36/36+ (6+8x)*4/36
(90x+27)/36= 36/36 + (24+32x)/36
khử mẫu ta được
90x+27 = 36+24+32x
chuyển các hạng tử chứa ẩn sang 1 vế
90x-32x=-27+36+24
58x= 33
x= 33/58
vậy nghiệm của pt đã cho là S=(33/58)
mn k cho mk nha
arigato
\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Rightarrow\frac{\left(10x+3\right).3}{12.3}=\frac{36}{36}+\frac{\left(6+8x\right).4}{9.4}\)
\(\Rightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Rightarrow30x+9=36+24+48x\)
\(\Rightarrow30x-48x=36+24-9\)
\(\Rightarrow-18x=51\)
\(\Rightarrow x=-\frac{17}{6}\)
a: =>10x-14=15-9x
=>19x=29
hay x=29/19
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x+9=32x+60
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>101x=101
hay x=1
d: \(\Leftrightarrow12\left(\dfrac{1}{2}-\dfrac{3}{2}x\right)=-5x+6\)
\(\Leftrightarrow6-18x+5x-6=0\)
=>-13x=0
hay x=0
\(a,\dfrac{5x-7}{3}=\dfrac{5-3x}{2}\\ \Leftrightarrow2\left(5x-7\right)=3\left(5-3x\right)\\ \Leftrightarrow10x-14=15-9x\\ \Leftrightarrow10x-14-15+9x=0\\ \Leftrightarrow19x-19=0\\ \Leftrightarrow x=1\)
\(b,\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\\ \Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\\ \Leftrightarrow30x+9=36+24+32x\\ \Leftrightarrow36+24+32x-30x-9=0\\ \Leftrightarrow2x+51=0\\ \Leftrightarrow x=-\dfrac{51}{2}\)
\(c,\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{7x-1+12x}{6}=\dfrac{16-x}{5}\\ \Leftrightarrow5\left(19x-1\right)=6\left(16-x\right)\\ \Leftrightarrow95x-5=96-6x\\ \Leftrightarrow95x-5-96+6x=0\\ \Leftrightarrow101x-101=0\\ \Leftrightarrow x=1\)
\(d,4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\\ \Leftrightarrow12\left(0,5-1,5x\right)=6-5x\\ \Leftrightarrow6-18x=6-5x\\ \Leftrightarrow6-5x-6+18x=0\\ \Leftrightarrow13x=0\\ \Leftrightarrow x=0\)
\(\dfrac{10x+3}{12}=\dfrac{1+6+8x}{9}=\dfrac{7+8x}{9}\)
\(\Leftrightarrow90x+27=84+96x\)
\(\Leftrightarrow-6x=57\)
\(\Leftrightarrow x=-\dfrac{57}{6}\)
\(10x+\dfrac{3}{12}=1+6+\dfrac{8x}{9}\)
\(\dfrac{10x}{1}+\dfrac{3}{12}=\dfrac{1}{1}+\dfrac{6}{1}+\dfrac{8x}{9}\)
\(\dfrac{10x.36}{1.36}+\dfrac{3.3}{12.3}=\dfrac{1.36}{1.36}+\dfrac{6.36}{1.36}+\dfrac{8x.4}{9.4}\)
khử mẫu :
=>360x+9=36+216+32x
=>360x+9-36-216-32x=0
=>328x-243=0
=>328x=243
=>x=243/328