Cho \(\hept{\begin{cases}a>c>0\\b>c>0\end{cases}}\)CMR \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{c\left(a-c\right)}\right)^2+\left(\sqrt{c\left(b-c\right)}\right)\le\left(\sqrt{ab}\right)^2\)
\(\Leftrightarrow c\left(a-c\right)+c\left(b-c\right)\le ab\)
Thấy: \(c\left(a-c+b-c\right)\)
\(\Leftrightarrow ac-\left(c^2-cb+c^2\right)\)
\(c< b\Rightarrow ac< ab\)
Do đó: \(ac-\left(c^2-cb+c^2\right)< ab\)
Vậy: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
ta cần cm \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
mà theo bunhia \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)=ab\)
Ta có\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=1\)
Thay 1=ab+bc+ca vào, ta có
\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}{\left(a+b\right)\left(a+c\right)}}=a\left(b+c\right)\)
Tương tự rồi cộng lại, ta có
A=2(ab+bc+ca)=2
^_^
Áp dụng Cô si cho 2 số dương ta đc:
\(2\sqrt{4a\left(3a+b\right)}\le4a+\left(3a+b\right)=7a+b\)
Tương tự: \(2\sqrt{4b\left(3b+a\right)}\le4b+\left(3b+a\right)=7b+a\)
\(\Rightarrow2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}\le8\left(a+b\right)\)
\(\Leftrightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4a=3a+b\\4b=3b+a\\a,b>0\end{cases}}\Leftrightarrow a=b>0\)
Giải HPT:
\(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\z+x-y=b\end{cases}\Leftrightarrow\hept{\begin{cases}2y=c+a\\2z=a+b\\2x=b+c\end{cases}\Leftrightarrow}}\hept{\begin{cases}y=\frac{c+a}{2}\\x=\frac{a+b}{2}\\x=\frac{b+c}{2}\end{cases}}\)
1 ) Áp dụng BĐT Cauchy :
\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}\)
Tương tự \(2\sqrt{b\left(3b+a\right)}\le\frac{4b+3b+a}{2}\)
\(\Rightarrow2\left(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\right)\le\frac{8a+8b}{2}=4\left(a+b\right)\)
\(\Rightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b>0\)
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0
đk <=> 1/x + 1/y + 1/z = 1/(xyz)
<=> xy + yz + zx = 1
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]
Ta có:
1 + x² = x² + xy + yz + zx = (x+z)(x+y)
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)]
≤ 1/2 . [y/(x+y) + z/(x+z)] (1)
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))
Tương tự:
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)
Cộng vế của (1),(2) và (3) lại ta được:
A ≤ 1/2 . 3 = 3/2
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3