tìm các số nguyên tố p sao cho p+2 và p+4 là các số nguyên tố
Các bn giúp nhá. Tick cho bn nào nhanh nhất nhá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2
th1: p=2\(\Rightarrow\)q=3,7
thử lại thấy chỉ có q=3 đúng.
th2: q=2
neu p=2 thi 5p+q khong phai so nguyen to
neu p=3 thi ca hai thoa man
neu p>3 thi p co dang 3k+1;3k+2
(lam tiep...)
\(xy-2x+y+1=0\\ x\left(y-2\right)+\left(y-2\right)=-3\\ \left(x+1\right)\left(y-2\right)=-3\)
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy \(\left(x;y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy (x;y)∈{(0;5);(2;3);(−2;−1);(−4;1)}
*Nếu p = 2 thì p+4 = 2+4 = 6 là hợp số (loại)
*Nếu p=3 thì p+4 = 3+ 4 = 7 là số nguyên tố
p+8 = 3+8 = 11 là số nguyên tố (chọn)
*Nếu p>3,p là số nguyên tố thì p = 3k+1 hoặc p=3k+2
+)Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 là hợp số(loại)
+)Nếu p =3k+2 thì p+4 = 3k+2+4 = 3k+6 là hợp số (loại)
Vậy p=3
Do p thuộc N*(vì p là số NT) nên có 3 TH xảy ra:p chia hết cho 3, p chia cho 3 dư 1, p chia cho 3 dư 2
Nếu p chia 3 dư 1 suy ra p = 3k+1(k thuộc N*)suy ra p+8=3k+1+8=3k+9 chia hết cho 3
mà p>3suy ra p là hợp số suy ra loại (vì p là SNT)
Nếu p chia cho 3 dư 2 suy ra p=3k+2(k thuộc N*)suy ra p+4=3k+2+4=3k+6chia hết cho 3
mà p>3 suy ra p là hợp số suy ra loại (vì p là SNT)
Suy ra p chia hết cho 3 mà p là SNT suy ra p=3
Suy ra p+4=3+4=7,p+8=3+8=11(hợp lí)
Vậy p=3
À, n là số tự nhiên thì chỉ có 2 giá trị là: n=0 và n=1
Các giá trị khác loại
Để đạt giá trị nguyên thì 4 phải chia hết cho 2n-1, hay 2n-1 là ước của 4.
=> 2n-1={-4; -2; -1; 1; 2; 4}
> n={-3/2; -1/2; 0; 1; 3/2; 5/2}
Do p + 2 và p + 4 là 2 số nguyên tố > 2 => 2 số này đều lẻ
=> p lẻ
+ Với p = 3 thì p + 2 = 5; p + 4 = 7, đều là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p = 3k + 1 hoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, là hợp số, loại
Nếu p = 3k + 2 thì p + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3, là hợp số, loại
Vậy p = 3
Thử p = 2 => p + 2 = 4 là hợp số => p = 2 không thỏa mãn
Thử p = 3 => p + 2 = 5 và p + 4 = 7 (t/m) => p = 3
Xét p>3 => p không chia hết cho 3 .Có 2 khả năng:
+) Nếu p=3k+1 => p = 2 = 3k+3 chia hết cho 3 => p+2 là hợp số
+) Nếu p=3k+2 => p = 4 = 3k+6 chia hết cho 3 => p+4 là hợp số
Chứng tỏ p > 3 ko thỏa mãn
Vậy p = 3