trên các cạnh BC, CD của hình vuông ABCD với AB=1 lần lượt lấy các điểm M, N sao cho MC+CN+MN=2. Gọi P, Q lần lượt là giao điểm của BD với AM, AN. Chứng minh rằng các đoạn thẳng BP, PQ, QD lập thành ba cạnh của một tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M, N lần lượt là trung điểm của SA, SC
Do đó, tam giác SAC có MN // AC (1)
Ta có: \(\frac{{BP}}{{BA}} = \frac{{BQ}}{{BC}} = \frac{1}{3}\)
Suy ra: PQ // AC (2)
Từ (1) và (2), suy ra: MN // PQ
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Giải thích các bước giải:
a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC
⇒ NPNP là đường trung bình ΔABCΔABC
⇒ NP//AB//CDNP//AB//CD (1)
Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD
⇒ NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ//CD//ABNQ//CD//AB (1)
Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC
⇒ MNMN là đường trung bình hình thang ABCDABCD
⇒ MN//AB//CDMN//AB//CD (3)
Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng
Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng
b/ Vì MNMN là đường trung bình thang ABCDABCD
nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2
Ta có: NPNP là đường trung bình ΔABCΔABC
⇒ NP=AB2=a2NP=AB2=a2
Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ=CD2=b2NQ=CD2=b2
Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2
c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN
⇒a+b2=3.a−b2⇒a+b2=3.a−b2
⇒a+b=3a−3b⇒a+b=3a−3b
⇒3a−a=b+3b⇒3a−a=b+3b
⇒2a=4b⇒2a=4b
⇒a=2b⇒a=2b
Chúc bạn học tốt !!!
^HT^