Cho x + y = 5. Tinh GT bieu thuc:
\(P=3x^2-2x+3y^2-2y+6xy-10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) (xy-1).(xy+5)
= x2y2+5xy-xy-5
=x2y2+4xy-5
a) b) d) bạn có thể ghi rõ được ko
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y)(2x-y)=0
<=> x-2y=0 hoặc 2x-y=0
*)Nếu x-2y=0=>x=2y
=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
*)Nếu 2x-y=0=>2x=y
=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Ta có: x>y>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)
\(\Rightarrow E=\frac{x+y}{x-y}>0\)
Ta có : E\(=\frac{x+y}{x-y}\)
\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
\(\Rightarrow E=\sqrt{9}\)( do E>0)
\(\Leftrightarrow E=3\)
a: \(A=x^4y+x^2y^3+x^2y^3+y^5-x^4y-y^5\)
\(=2x^2y^3\)
b: \(=4x^2-y^2-100\)
\(=4\cdot\left(-25\right)^2-10^2-100\)
=400-200=200
<=> m = (2x-1).(2y-1)
<=> m = 2x.2y + 2x.(-1) + (-1).2y +(-1).(-1)
<=> m = 4xy - 2x - 2y +1
<=> m = 4xy - 2.(x-y) +1
thế x + y = 10 và xy bằng 16 vào biểu thức ta dc
m = 4.16 - 2.10 +1
=> m = 45
vậy giá trị của biểu thức là m = 45
a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0
x2 + 2 > 0 với mọi x
Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)
b) Tương tự
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= (3x2 + 6xy + 3y2) - (2x + 2y) - 100
= 3(x2 + 2xy + y2) - 2(x + y) - 100
= 3(x + y)2 - 2.5 - 100
= 3. 52 -10 - 100
= 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10
= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10
= (x + y)3 - 2(x2 + 2xy + y2) + 25
= 53 - 2(x + y)2 +25
= 125 - 2. 52 + 25
= 125 - 50 + 25 = 100
P = 3x2 - 2x + 3y2 - 2y + 6xy - 10 = (3x2 + 6xy + 3y2) - (2x + 2y + 10) = 3(x2 + 2xy + y2) - 2(x + y + 5)
= 3(x + y)2 - 2.(5 + 5) = 3.52 - 2.10 = 75 - 20 = 55
\(P=3x^2-2x+3y^2-2y+6xy-10\)
\(P=3\left(x^2+y^2\right)-2\left(x+y\right)+6xy-10\)
\(P=3\left[\left(x+y\right)-2xy\right]-10+6xy-10\)
\(P=3\left(5-2xy\right)-20+6xy\)
\(P=15-6xy-20+6xy\)
\(P=15-20=-5\)