K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

A) 52018 + 52017 + 52016 = 52016 . (52 + 5 + 1) = 52016 . (25 + 5 + 1) = 52016 . 31

Vì 31 chia hết cho 31 => 52016 . 31 chia hết cho 31

hay 52018 + 52017 + 52016 chia hết cho 31

5 tháng 8 2016

a,52018+52017+52016=52016(1+5+52)=52016.31

=>52018+52017+52016 chia hết cho 31.

b,1+7+72+73+ ....+7101

=(1+7)+(72+73)+...+(7100+7101)

=1.(1+7)+72.(1+7)+...+7100.(1+7)

=8.(1+72+...+7100)

=>1+7+72+...+7101 chia hết cho 8.

29 tháng 7 2023

\(4^{39}+4^{40}+4^{41}=4^{38}.\left(4+4^2+4^3\right)=4^{38}.84⋮28\left(Vì:84⋮28\right)\)

29 tháng 7 2023

cảm ơn

 

NM
9 tháng 11 2021

ta có :

undefined

undefined

A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)

10 tháng 1 2022

\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 

24 tháng 9 2021

Gọi 2 số chia 7 có dư là \(7k+a;7q+a\left(p,q,a\in N;a\le7\right)\)

Ta có \(7k+a-\left(7q+a\right)=7k-7q=7\left(k-q\right)⋮7\)

Vậy ...

24 tháng 9 2021

Gọi \(2\) số đề bài cho là \(7m+k\) và \(7.n+k\)

Hiệu của chúng là: \(\left(7.m+k\right)-\left(7.n+k\right)\)

\(=7.m+k-7.n-k\)

\(=7.m-7.n\)

\(7.\left(m-n\right)⋮7\)

Chứng tỏ nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7