Tìm x,y,z
\(\frac{x+y+2015}{z}\)= \(\frac{y+z-2016}{x}\)= \(\frac{z+x+1}{y}\)= \(\frac{2}{x+y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-y\right)^2=\left(z-x\right)\left(z-y\right)\Leftrightarrow\frac{2\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}=1\)
\(\frac{2\left(z-y\right)^2}{\left(z-x\right)\left(z-y\right)}=\frac{\left(x-y\right)^2}{z\left(x-y\right)}=\frac{x-y}{z}\Rightarrow x-y=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)
\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)
\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x = -y hoặc y = -z hoặc z = -x
Không mất tổng quát giả sử x = -y, khi đó:
\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)
\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)
\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y+2015}{z}=\frac{y+z-2016}{x}=\frac{z+x+1}{y}.\)
\(=\frac{x+y+2015+y+z-2016+z+x+1}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Do đó x+y+z=1 => x+y=1-z => \(\frac{2016-z}{z}=2\Rightarrow2016-z=2z\Leftrightarrow2016=3z\)
=> z= 672
Tương tự : x= -2015/3; y=2/3
x=2015/3
y=2/3