Gía trị nhỏ nhất cảu biểu thức A=\(x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=25\)vào B:
=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)
b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé
bản rút gọn biểu thức trên A =\(x-\sqrt{x}+2\)
=\(x-2\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
= \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\)
vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)với mọi x
<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)voi mọi x
<=> A \(\ge\)7/4
=> min A = 7/4
dau = xay ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x=1/4