Cho tam ABC vuông tại A. Gọi D là trung điểm của AC. Trên tia BD lấy điểm E sao cho DE=DB a) Chứng minh tam giác ABD= tam giác CED b) Từ A và C kẻ các đường vuông góc lần lượt tại M và N. Chứng minh BM=EN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a, Xét Δ ABD và Δ CED, có :
DB = DE (D là trung điểm của BE)
DA = DC (BD là đường trung tuyến của AC)
\(\widehat{ADB}=\widehat{CDE}\) (đối đỉnh)
=> Δ ABD = Δ CED (c.g.c)
a: Xét ΔBAI và ΔBDI có
BA=BD
AI=DI
BI chung
=>ΔBAI=ΔBDI
b: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>góc BDE=90 độ
=>DE vuông góc BC và EA=ED
a/Xét /\ ABD và /\ CED có:
AD = CD (Vì D là trung điểm của AC)
BD=ED (gt)
góc BDA=góc EDC ( Đối đỉnh)
=>/\ ABD=/\ CED (c.g.c)
b/Xét /\ DAM và /\ DNC
góc DMA = góc DNC =90 độ
AD=CD(cmt)
góc MDA=góc NDC(đối đỉnh)
=>/\ DAM = /\ DNC (cạnh huyền_góc nhọn)
=>MD=ND(2 cạnh tương ứng)
Ta có : /\ ABD= /\ CED (cmt)
=>BD=ED(2 cạnh tương ứng)
Ta có BD=BM+MD
ED=EN+ND
mà BD=ED(cmt)
MD=ND(cmt)
=>BM=EN