K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

Với \(x< 9\) biểu thức này chỉ có max, ko có min

Để có min thì cần \(x>9\)

25 tháng 3 2022

à đúng rùi ạ :(( em nhầm

17 tháng 5 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

17 tháng 5 2021

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)

\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)

=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)

 

Dấu = xảy ra khi x=1

30 tháng 5 2022

Điều kiện xác định: \(x\ge0;x\ne9\)

1/ \(P=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)

\(=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}-\dfrac{9\sqrt{x}-15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x-7\sqrt{x}-6+2x-\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}\)

b) Khi \(x=4+2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Ta có \(P=\dfrac{5\left(\sqrt{3}+1\right)-2}{\sqrt{3}+1+1}=\dfrac{5\sqrt{3}+3}{\sqrt{3}+2}\)

c) \(P=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-7}{\sqrt{x}+1}=5-\dfrac{7}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow P\ge5-\dfrac{7}{1}=-2\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Vậy \(P_{min}=-2\) đạt được khi \(x=0\)

13 tháng 11 2021

\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)

19 tháng 11 2023

2: \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{\sqrt{x}+5-10}{\sqrt{x}+5}\)

\(=1-\dfrac{10}{\sqrt{x}+5}\)

\(\sqrt{x}+5>=5\forall x\)

=>\(\dfrac{10}{\sqrt{x}+5}< =\dfrac{10}{5}=2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}>=-2\forall x\)

=>\(-\dfrac{10}{\sqrt{x}+5}+1>=-2+1=-1\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: \(A_{min}=-1\) khi x=0

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1

15 tháng 10 2023

Biểu thức gì vậy bạn?

15 tháng 10 2023