K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

\(\Delta'=4-\left(m+1\right)=3-m\ge0\Rightarrow m\le4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2-10x_1x_2=2020\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-12x_1x_2=2020\)

\(\Leftrightarrow16-12\left(m+1\right)=2020\)

\(\Rightarrow m=-168\left(tm\right)\)

26 tháng 5 2021

PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`

Viet: `x_1+x_2=-4`

`x_1 x_2=m+1`

`(x_1)/(x_2)+(x_2)/(x_1)=10/3`

`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`

`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`

`<=> (4^2-2(m+1))/(m+1)=10/3`

`<=> m=2` (TM)

Vậy `m=2`.

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)

\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)

\(\Rightarrow m=\pm \sqrt{31}\)

13 tháng 5 2021

Cô hỗ trợ câu mới nhất em gửi vào inb nhé cô !

5 tháng 7 2018

\(pt:x^2-4x+m+1=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.\left(m+1\right)\)\(=16-4m-4=12-4m\)

Phương trình có hai nghiệm x1 ,x2 :

\(\Leftrightarrow\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)(1)

Theo hệ thức Viet ta có :

\(\hept{\begin{cases}x_1+x_2=4\\x_1.x_2=m+1\end{cases}}\)

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=12\)

\(\Leftrightarrow16-2m-2=12\Leftrightarrow14-2m=12\Leftrightarrow2m=2\Leftrightarrow m=1\)( TMĐK (1))

Vậy m = 1

\(x^2-\left(m-1\right)x-2=0\)

a=1; b=-m+1; c=-2

Vì a*c=-2<0

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)

=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)

\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)

=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

=>\(x_1^3-x_2^3=3x_1-3x_2\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)

=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)

=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

1 tháng 4 2023

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)