\(\frac{1}{2.4.6}+\frac{1}{4.6.8}+...+\frac{1}{96.98.100}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+50}\)
3k cho ai trả lời đúng 2 câu này ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cứ mỗi p/số kia bé hơn:1+1/1.2+1/2.3+1/3.4+....+1/49.50
phân phối ra nhé còn:2-1/50
mà 1/50>0
=>A<2
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+....+\frac{1}{49.50}\)
A=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<2=\frac{2}{1}\)
A=\(\frac{49}{50}<\frac{2}{1}=\frac{49}{50}<\frac{100}{50}\)
Vậy A<2 hay\(\frac{49}{50}<2\)
Với mọi n thuộc N * ta có :
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+n^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+n^2+1+2n^3+2n+2n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng vào ta được :
\(A=\left(1+1-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=2012-\frac{1}{2012}=\frac{2012^2-1}{2012}\)
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào