K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Ta xét 2 phân thức \(\frac{a^2}{a^2-100a+5000}\)và \(\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)(với \(a\in N\)và \(1\le a\le99\)).

Xét hiệu 2 mẫu: \(a^2-100a+5000-\left(100-a\right)^2+100\left(100-a\right)-5000\)

\(=a^2-100a-100^2+200a-a^2+100^2-100a=0.\)

Do đó 2 mẫu bằng nhau và \(\frac{a^2}{a^2-100a+5000}+\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)

\(=\frac{a^2+\left(100-a\right)^2}{a^2-100a+5000}=\frac{2a^2-200a+100^2}{a^2-100a+5000}=2\)

Thay a = 1, 2, 3, ..., 49 ta có:

\(\left(\frac{1^2}{1^2-100+5000}+\frac{99^2}{99^2-9900+5000}\right)+\left(\frac{2^2}{2^2-200+5000}+\frac{98^2}{98^2-9800+5000}\right)+...+\left(\frac{49^2}{49^2-4900+5000}+\frac{51^2}{51^2-5100+5000}\right)+\frac{50^2}{50^2-5000+5000}\)

\(=2.49+1=99\)

3 tháng 8 2016

lấy cái tên NARUTO ở đâu mà hay ghê (ở trong BB phải ko)

20 tháng 12 2015

tham khảo câu hỏi tương tự

29 tháng 11 2015

Dạng chuẩn:

\(\frac{a^2}{a^2-a.100+5000}\)

tìm cách rút gọn ik

29 tháng 11 2015

ai biết đăng ảnh lên olm dạy mình với

mình ko biết 

17 tháng 2 2016

6a63f6246b600c3375b4bf7a194c510fd8f9a1b7.jpg

6a63f6246b600c33759fbf7a194c510fd8f9a19a.jpg

b3fb43166d224f4ac10913a10af790529922d1f4.jpg

Hơi khó nhìn nha

17 tháng 2 2016

mk nghĩ thế này: xét k E N* ta có:

(100-k)2 - (100-k).100+5000 

= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000

= k2 - 100k + 5000

lần lượt thay k = 1;2;3;...;99 ta có

12 - 100+ 5000 = 992 - 9900+ 5000

22 - 200+ 5000 = 982 - 9800+ 500

...

992 - 9900+ 5000 = 12 - 100 + 5000

ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)

mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)

do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)

=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)

do đó A= \(\frac{2.99}{2}=99\)

duyệt đi

15 tháng 11 2015

tớ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

không 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biết 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

làm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bài

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

này

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

^_^