SO Sánh \(2^{3n}\)và\(3^{2n}\)với n thuộc N*
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 9 2017
\(3^{2n}\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
+) Với \(n\in N\) * thì \(9^n>8^n\Leftrightarrow3^{2n}>2^{3n}\)
HN
1
9 tháng 7 2017
a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2
= n + 2 / 2n + 5
Mà n + 2 / 2n + 5 < n + 2 / 2n + 1
=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1
Vậy n / 2n + 3 < n + 2 / 2n + 1
b) Ta có : n / 3n + 1 = 2n / 6n + 2
Mà 2n / 6n + 2 < 2n / 6n + 1
Vậy n / 3n + 1 < 2n / 6n + 1
MC
1
30 tháng 3 2016
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B
KK
14 tháng 2 2019
Ta có: 32n = (32)n = 9n
23n = (23)n = 8n
Vì 9n > 8n => 32n > 23n
Vậy ...
32n=(32)n=9n và 23n=(23)n=8n
Vì 8 < 9=> 8n < 9n => 32n > 23n
23n<32n
Nguyễn Minh Hiếu