K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

\(A=\frac{x}{\sqrt{x}-1}+\frac{\sqrt{x}-2x}{x-\sqrt{x}}\)

\(=\frac{x}{\sqrt{x}-1}+\frac{1-2\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

24 tháng 3 2022

bn làm tắt à

8 tháng 8 2019

ai giúp mình với ạ ngaingung

4 tháng 7 2019

a) \(P=\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}=\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\)

b)

\(\frac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\\ =\frac{\left(1+\sqrt{x}\right)+\sqrt{y}\left(1+\sqrt{x}\right)}{1+\sqrt{y}}\\ =\frac{\left(1+\sqrt{y}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{y}}\\ =1+\sqrt{x}\)

4 tháng 7 2019

Thanks bạn nhiều!

3 tháng 9 2016

a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)

- Thanks bạn nhé!!!

13 tháng 9 2018

\(A=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

19 tháng 6 2015

a. P = \(\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)

\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

b. P = 0 \(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\sqrt{x}=0\)hoặc \(\sqrt{x}-1=0\)

\(\Leftrightarrow x=0\) hoặc x = 1 với x = 0 không thỏa mản. Vậy x = 1 thì P = 0 

Ta có: \(A=\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{x-2}{x+\sqrt{x}+1}\right)\)

\(=\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}+3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}\)